Properties

Label 2-13e2-1.1-c7-0-5
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.25·2-s + 8.41·3-s − 126.·4-s − 307.·5-s + 10.5·6-s + 83.6·7-s − 319.·8-s − 2.11e3·9-s − 386.·10-s − 3.72e3·11-s − 1.06e3·12-s + 104.·14-s − 2.58e3·15-s + 1.57e4·16-s − 3.55e4·17-s − 2.65e3·18-s − 3.55e4·19-s + 3.89e4·20-s + 704.·21-s − 4.67e3·22-s − 8.46e3·23-s − 2.68e3·24-s + 1.66e4·25-s − 3.62e4·27-s − 1.05e4·28-s + 3.79e4·29-s − 3.24e3·30-s + ⋯
L(s)  = 1  + 0.110·2-s + 0.179·3-s − 0.987·4-s − 1.10·5-s + 0.0199·6-s + 0.0922·7-s − 0.220·8-s − 0.967·9-s − 0.122·10-s − 0.844·11-s − 0.177·12-s + 0.0102·14-s − 0.198·15-s + 0.963·16-s − 1.75·17-s − 0.107·18-s − 1.18·19-s + 1.08·20-s + 0.0165·21-s − 0.0936·22-s − 0.145·23-s − 0.0396·24-s + 0.212·25-s − 0.354·27-s − 0.0910·28-s + 0.288·29-s − 0.0219·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2930539226\)
\(L(\frac12)\) \(\approx\) \(0.2930539226\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 1.25T + 128T^{2} \)
3 \( 1 - 8.41T + 2.18e3T^{2} \)
5 \( 1 + 307.T + 7.81e4T^{2} \)
7 \( 1 - 83.6T + 8.23e5T^{2} \)
11 \( 1 + 3.72e3T + 1.94e7T^{2} \)
17 \( 1 + 3.55e4T + 4.10e8T^{2} \)
19 \( 1 + 3.55e4T + 8.93e8T^{2} \)
23 \( 1 + 8.46e3T + 3.40e9T^{2} \)
29 \( 1 - 3.79e4T + 1.72e10T^{2} \)
31 \( 1 + 1.61e5T + 2.75e10T^{2} \)
37 \( 1 - 3.37e5T + 9.49e10T^{2} \)
41 \( 1 + 5.67e4T + 1.94e11T^{2} \)
43 \( 1 - 7.58e5T + 2.71e11T^{2} \)
47 \( 1 - 8.90e5T + 5.06e11T^{2} \)
53 \( 1 + 7.00e5T + 1.17e12T^{2} \)
59 \( 1 - 2.07e6T + 2.48e12T^{2} \)
61 \( 1 + 2.31e6T + 3.14e12T^{2} \)
67 \( 1 + 1.83e6T + 6.06e12T^{2} \)
71 \( 1 - 2.68e6T + 9.09e12T^{2} \)
73 \( 1 + 1.65e5T + 1.10e13T^{2} \)
79 \( 1 + 5.86e6T + 1.92e13T^{2} \)
83 \( 1 + 5.93e6T + 2.71e13T^{2} \)
89 \( 1 - 1.15e7T + 4.42e13T^{2} \)
97 \( 1 - 1.65e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41478528513093313030063146841, −10.65088095839415587110634092060, −9.130446286143450649051427483906, −8.460245649278955637602432235854, −7.62726598722437334988986956161, −6.03604027779909309614068615006, −4.71862621112451349963405042075, −3.89306930155436794514874860537, −2.51559997479836930544384923181, −0.27648539043695843602849712715, 0.27648539043695843602849712715, 2.51559997479836930544384923181, 3.89306930155436794514874860537, 4.71862621112451349963405042075, 6.03604027779909309614068615006, 7.62726598722437334988986956161, 8.460245649278955637602432235854, 9.130446286143450649051427483906, 10.65088095839415587110634092060, 11.41478528513093313030063146841

Graph of the $Z$-function along the critical line