L(s) = 1 | + (1.86 − 0.5i)2-s + (−1.36 + 2.36i)3-s + (−0.232 + 0.133i)4-s + (−4.36 − 4.36i)5-s + (−1.36 + 5.09i)6-s + (−8.46 − 2.26i)7-s + (−5.83 + 5.83i)8-s + (0.767 + 1.33i)9-s + (−10.3 − 5.96i)10-s + (−1.66 − 6.19i)11-s − 0.732i·12-s − 16.9·14-s + (16.2 − 4.36i)15-s + (−7.42 + 12.8i)16-s + (−9.99 + 5.76i)17-s + (2.09 + 2.09i)18-s + ⋯ |
L(s) = 1 | + (0.933 − 0.250i)2-s + (−0.455 + 0.788i)3-s + (−0.0580 + 0.0334i)4-s + (−0.873 − 0.873i)5-s + (−0.227 + 0.849i)6-s + (−1.20 − 0.323i)7-s + (−0.728 + 0.728i)8-s + (0.0853 + 0.147i)9-s + (−1.03 − 0.596i)10-s + (−0.150 − 0.563i)11-s − 0.0610i·12-s − 1.20·14-s + (1.08 − 0.291i)15-s + (−0.464 + 0.804i)16-s + (−0.587 + 0.339i)17-s + (0.116 + 0.116i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0386i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.999 - 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.00284372 + 0.147272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00284372 + 0.147272i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (-1.86 + 0.5i)T + (3.46 - 2i)T^{2} \) |
| 3 | \( 1 + (1.36 - 2.36i)T + (-4.5 - 7.79i)T^{2} \) |
| 5 | \( 1 + (4.36 + 4.36i)T + 25iT^{2} \) |
| 7 | \( 1 + (8.46 + 2.26i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (1.66 + 6.19i)T + (-104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (9.99 - 5.76i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (0.901 - 3.36i)T + (-312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (-8.49 - 4.90i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-5.69 + 9.86i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-1.92 - 1.92i)T + 961iT^{2} \) |
| 37 | \( 1 + (-11.2 - 42.1i)T + (-1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (18.9 - 5.08i)T + (1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (45 - 25.9i)T + (924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-0.320 + 0.320i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 78.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (40.9 + 10.9i)T + (3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (49.1 + 85.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (74.5 - 19.9i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (-8.31 + 31.0i)T + (-4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-48.2 + 48.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 82.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + (69.5 + 69.5i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-8.52 - 31.8i)T + (-6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (20.0 - 74.8i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.11169581328945215783945484128, −12.13867895283604195582766046739, −11.31279479874529629660681814009, −10.18689702987457682406303694853, −9.056985141389933427793298634278, −8.030006027346294769527341342693, −6.30146773256022371226131316793, −5.04158435051291363416355614481, −4.23582386098910930144048075870, −3.29803238534585579377590398981,
0.06837857285609762124790845011, 2.98774279935911102777837256144, 4.15112555783857483803076659912, 5.72005416268390527324805610504, 6.77923525477261594378088809584, 7.16635778029604075185826848571, 9.025665508939271000383754500784, 10.13887414639356950599861903498, 11.49061354580289696454606204226, 12.35764482054200563066702355643