Properties

Label 2-13e2-169.3-c1-0-0
Degree $2$
Conductor $169$
Sign $-0.287 + 0.957i$
Analytic cond. $1.34947$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.59 + 1.19i)2-s + (−0.271 + 1.32i)3-s + (0.546 − 1.88i)4-s + (−0.978 − 0.513i)5-s + (−1.15 − 2.43i)6-s + (−3.69 − 0.600i)7-s + (−0.0244 − 0.0645i)8-s + (1.06 + 0.455i)9-s + (2.17 − 0.352i)10-s + (−3.85 + 1.64i)11-s + (2.35 + 1.23i)12-s + (1.14 − 3.41i)13-s + (6.59 − 3.46i)14-s + (0.947 − 1.16i)15-s + (3.43 + 2.17i)16-s + (−3.76 − 0.611i)17-s + ⋯
L(s)  = 1  + (−1.12 + 0.845i)2-s + (−0.156 + 0.767i)3-s + (0.273 − 0.943i)4-s + (−0.437 − 0.229i)5-s + (−0.472 − 0.995i)6-s + (−1.39 − 0.226i)7-s + (−0.00865 − 0.0228i)8-s + (0.356 + 0.151i)9-s + (0.686 − 0.111i)10-s + (−1.16 + 0.495i)11-s + (0.681 + 0.357i)12-s + (0.318 − 0.947i)13-s + (1.76 − 0.925i)14-s + (0.244 − 0.299i)15-s + (0.859 + 0.543i)16-s + (−0.912 − 0.148i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.287 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.287 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-0.287 + 0.957i$
Analytic conductor: \(1.34947\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{169} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :1/2),\ -0.287 + 0.957i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0274770 - 0.0369324i\)
\(L(\frac12)\) \(\approx\) \(0.0274770 - 0.0369324i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-1.14 + 3.41i)T \)
good2 \( 1 + (1.59 - 1.19i)T + (0.556 - 1.92i)T^{2} \)
3 \( 1 + (0.271 - 1.32i)T + (-2.75 - 1.17i)T^{2} \)
5 \( 1 + (0.978 + 0.513i)T + (2.84 + 4.11i)T^{2} \)
7 \( 1 + (3.69 + 0.600i)T + (6.63 + 2.21i)T^{2} \)
11 \( 1 + (3.85 - 1.64i)T + (7.61 - 7.93i)T^{2} \)
17 \( 1 + (3.76 + 0.611i)T + (16.1 + 5.38i)T^{2} \)
19 \( 1 + (-1.11 + 1.93i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.105 + 0.182i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.73 - 2.80i)T + (8.06 - 27.8i)T^{2} \)
31 \( 1 + (2.91 - 4.22i)T + (-10.9 - 28.9i)T^{2} \)
37 \( 1 + (-7.40 - 0.597i)T + (36.5 + 5.93i)T^{2} \)
41 \( 1 + (2.04 - 9.99i)T + (-37.7 - 16.0i)T^{2} \)
43 \( 1 + (11.3 - 0.919i)T + (42.4 - 6.89i)T^{2} \)
47 \( 1 + (6.89 + 1.69i)T + (41.6 + 21.8i)T^{2} \)
53 \( 1 + (-0.891 - 2.35i)T + (-39.6 + 35.1i)T^{2} \)
59 \( 1 + (-1.75 + 1.11i)T + (25.2 - 53.3i)T^{2} \)
61 \( 1 + (4.20 + 5.15i)T + (-12.2 + 59.7i)T^{2} \)
67 \( 1 + (0.693 + 2.39i)T + (-56.6 + 35.8i)T^{2} \)
71 \( 1 + (-11.7 + 3.91i)T + (56.7 - 42.6i)T^{2} \)
73 \( 1 + (0.335 - 2.76i)T + (-70.8 - 17.4i)T^{2} \)
79 \( 1 + (-9.21 - 2.27i)T + (69.9 + 36.7i)T^{2} \)
83 \( 1 + (7.54 - 6.68i)T + (10.0 - 82.3i)T^{2} \)
89 \( 1 + (4.88 + 8.46i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.0544 - 1.35i)T + (-96.6 - 7.80i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15966464433498717767672341948, −12.79884157285441243541267198295, −10.98707927201116084941630323395, −10.03398780719756050508614344811, −9.604526621535894755638423500795, −8.356626811899581243282713873040, −7.41115349568772198562868678763, −6.40412453150343980848890076161, −4.94178998346688585651696742817, −3.39847021459443431285829726885, 0.05914514000256636842051170807, 2.12669063980175768401708134494, 3.58058018826777982163682906354, 5.91372201910447141624790949922, 7.05507638287884450584171794799, 8.075238915579832630363397120604, 9.252726992054445266348963047851, 9.990376752462550648014457540788, 11.11260346511931071121023407476, 11.84763458245171584667255292358

Graph of the $Z$-function along the critical line