Properties

Label 2-13e2-1.1-c9-0-52
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.7·2-s + 99.5·3-s − 121.·4-s + 1.52e3·5-s − 1.96e3·6-s + 9.24e3·7-s + 1.25e4·8-s − 9.78e3·9-s − 3.00e4·10-s − 3.88e4·11-s − 1.20e4·12-s − 1.82e5·14-s + 1.51e5·15-s − 1.85e5·16-s + 4.53e5·17-s + 1.93e5·18-s + 9.65e5·19-s − 1.84e5·20-s + 9.19e5·21-s + 7.67e5·22-s + 5.43e5·23-s + 1.24e6·24-s + 3.61e5·25-s − 2.93e6·27-s − 1.11e6·28-s + 4.05e6·29-s − 2.99e6·30-s + ⋯
L(s)  = 1  − 0.873·2-s + 0.709·3-s − 0.236·4-s + 1.08·5-s − 0.619·6-s + 1.45·7-s + 1.08·8-s − 0.496·9-s − 0.951·10-s − 0.799·11-s − 0.167·12-s − 1.27·14-s + 0.772·15-s − 0.707·16-s + 1.31·17-s + 0.434·18-s + 1.69·19-s − 0.257·20-s + 1.03·21-s + 0.698·22-s + 0.404·23-s + 0.766·24-s + 0.185·25-s − 1.06·27-s − 0.344·28-s + 1.06·29-s − 0.674·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.455117623\)
\(L(\frac12)\) \(\approx\) \(2.455117623\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 19.7T + 512T^{2} \)
3 \( 1 - 99.5T + 1.96e4T^{2} \)
5 \( 1 - 1.52e3T + 1.95e6T^{2} \)
7 \( 1 - 9.24e3T + 4.03e7T^{2} \)
11 \( 1 + 3.88e4T + 2.35e9T^{2} \)
17 \( 1 - 4.53e5T + 1.18e11T^{2} \)
19 \( 1 - 9.65e5T + 3.22e11T^{2} \)
23 \( 1 - 5.43e5T + 1.80e12T^{2} \)
29 \( 1 - 4.05e6T + 1.45e13T^{2} \)
31 \( 1 - 2.44e6T + 2.64e13T^{2} \)
37 \( 1 + 7.60e6T + 1.29e14T^{2} \)
41 \( 1 - 4.47e6T + 3.27e14T^{2} \)
43 \( 1 - 1.62e7T + 5.02e14T^{2} \)
47 \( 1 + 1.05e7T + 1.11e15T^{2} \)
53 \( 1 + 4.76e7T + 3.29e15T^{2} \)
59 \( 1 + 1.11e8T + 8.66e15T^{2} \)
61 \( 1 - 6.91e7T + 1.16e16T^{2} \)
67 \( 1 + 2.81e8T + 2.72e16T^{2} \)
71 \( 1 - 3.46e8T + 4.58e16T^{2} \)
73 \( 1 + 1.76e8T + 5.88e16T^{2} \)
79 \( 1 + 2.36e8T + 1.19e17T^{2} \)
83 \( 1 - 2.90e8T + 1.86e17T^{2} \)
89 \( 1 - 4.52e8T + 3.50e17T^{2} \)
97 \( 1 - 1.48e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72100082557929497735642683818, −9.868319304561476701059034264150, −9.071815476826559103709257990423, −8.079132999443033250568151273876, −7.61207562459972767120200676932, −5.60224822504485735866749862539, −4.87414513228519324989871515941, −3.04020930470510010913640903704, −1.81358915357501837722808332949, −0.932941644921500772518140071669, 0.932941644921500772518140071669, 1.81358915357501837722808332949, 3.04020930470510010913640903704, 4.87414513228519324989871515941, 5.60224822504485735866749862539, 7.61207562459972767120200676932, 8.079132999443033250568151273876, 9.071815476826559103709257990423, 9.868319304561476701059034264150, 10.72100082557929497735642683818

Graph of the $Z$-function along the critical line