Properties

Label 2-1680-7.6-c2-0-18
Degree $2$
Conductor $1680$
Sign $0.957 - 0.288i$
Analytic cond. $45.7766$
Root an. cond. $6.76584$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s − 2.23i·5-s + (−6.70 + 2.02i)7-s − 2.99·9-s − 11.9·11-s + 9.67i·13-s − 3.87·15-s − 7.09i·17-s − 17.5i·19-s + (3.50 + 11.6i)21-s + 2.84·23-s − 5.00·25-s + 5.19i·27-s − 13.6·29-s + 19.9i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.447i·5-s + (−0.957 + 0.288i)7-s − 0.333·9-s − 1.08·11-s + 0.744i·13-s − 0.258·15-s − 0.417i·17-s − 0.923i·19-s + (0.166 + 0.552i)21-s + 0.123·23-s − 0.200·25-s + 0.192i·27-s − 0.472·29-s + 0.643i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.957 - 0.288i$
Analytic conductor: \(45.7766\)
Root analytic conductor: \(6.76584\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1680} (1441, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1680,\ (\ :1),\ 0.957 - 0.288i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.078749062\)
\(L(\frac12)\) \(\approx\) \(1.078749062\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
5 \( 1 + 2.23iT \)
7 \( 1 + (6.70 - 2.02i)T \)
good11 \( 1 + 11.9T + 121T^{2} \)
13 \( 1 - 9.67iT - 169T^{2} \)
17 \( 1 + 7.09iT - 289T^{2} \)
19 \( 1 + 17.5iT - 361T^{2} \)
23 \( 1 - 2.84T + 529T^{2} \)
29 \( 1 + 13.6T + 841T^{2} \)
31 \( 1 - 19.9iT - 961T^{2} \)
37 \( 1 + 11.0T + 1.36e3T^{2} \)
41 \( 1 + 28.2iT - 1.68e3T^{2} \)
43 \( 1 - 72.9T + 1.84e3T^{2} \)
47 \( 1 - 28.3iT - 2.20e3T^{2} \)
53 \( 1 + 11.7T + 2.80e3T^{2} \)
59 \( 1 - 101. iT - 3.48e3T^{2} \)
61 \( 1 - 76.7iT - 3.72e3T^{2} \)
67 \( 1 - 76.2T + 4.48e3T^{2} \)
71 \( 1 - 95.4T + 5.04e3T^{2} \)
73 \( 1 - 120. iT - 5.32e3T^{2} \)
79 \( 1 - 14.8T + 6.24e3T^{2} \)
83 \( 1 + 60.9iT - 6.88e3T^{2} \)
89 \( 1 + 88.6iT - 7.92e3T^{2} \)
97 \( 1 + 18.8iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.092418605802626794350662230846, −8.554286437393892832803260581276, −7.42373763772242290666644393702, −6.96503026081041983306657017224, −5.94276908510597076412140090657, −5.26061897754695990539575073198, −4.22008270295211765722144075637, −2.97960740897888807289755722526, −2.23374757958894438647389030167, −0.75490505468220668939100917697, 0.40421529324936411724555952472, 2.27353865929681829889464268649, 3.26130884220568726608504505701, 3.87542116921018040274785763282, 5.10749067991496278180852542035, 5.86237454227588808919748695740, 6.62366002657525813342220236989, 7.71713552111055001956768903440, 8.174525080341201087028991614137, 9.441855748990509348121703532925

Graph of the $Z$-function along the critical line