L(s) = 1 | + (2.87 − 0.873i)3-s + 2.23i·5-s − 2.64·7-s + (7.47 − 5.01i)9-s − 6.37i·11-s + 8.60·13-s + (1.95 + 6.41i)15-s − 19.7i·17-s + 15.5·19-s + (−7.59 + 2.31i)21-s − 42.3i·23-s − 5.00·25-s + (17.0 − 20.9i)27-s + 46.9i·29-s − 56.3·31-s + ⋯ |
L(s) = 1 | + (0.956 − 0.291i)3-s + 0.447i·5-s − 0.377·7-s + (0.830 − 0.557i)9-s − 0.579i·11-s + 0.661·13-s + (0.130 + 0.427i)15-s − 1.16i·17-s + 0.816·19-s + (−0.361 + 0.110i)21-s − 1.84i·23-s − 0.200·25-s + (0.632 − 0.774i)27-s + 1.61i·29-s − 1.81·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.291 + 0.956i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.291 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.662380105\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.662380105\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.87 + 0.873i)T \) |
| 5 | \( 1 - 2.23iT \) |
| 7 | \( 1 + 2.64T \) |
good | 11 | \( 1 + 6.37iT - 121T^{2} \) |
| 13 | \( 1 - 8.60T + 169T^{2} \) |
| 17 | \( 1 + 19.7iT - 289T^{2} \) |
| 19 | \( 1 - 15.5T + 361T^{2} \) |
| 23 | \( 1 + 42.3iT - 529T^{2} \) |
| 29 | \( 1 - 46.9iT - 841T^{2} \) |
| 31 | \( 1 + 56.3T + 961T^{2} \) |
| 37 | \( 1 + 59.2T + 1.36e3T^{2} \) |
| 41 | \( 1 - 46.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 75.1T + 1.84e3T^{2} \) |
| 47 | \( 1 + 43.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 25.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 40.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 65.1T + 3.72e3T^{2} \) |
| 67 | \( 1 - 0.811T + 4.48e3T^{2} \) |
| 71 | \( 1 + 130. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 21.1T + 5.32e3T^{2} \) |
| 79 | \( 1 - 35.7T + 6.24e3T^{2} \) |
| 83 | \( 1 - 29.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 82.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 112.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.920370446993228714681023456596, −8.371670287761083759273264676181, −7.25050986595685101537124581361, −6.91131186184449183676893044459, −5.89184007426207955791574700455, −4.80542268627228809572317831650, −3.52372229516167982917244186241, −3.11742214533572623064734853011, −1.99303847282659771943572673271, −0.63875959987133670550806923061,
1.33521532402476483215794534204, 2.27149168864159624958821590826, 3.67093899579401491002552960004, 3.91978434492326529041381983453, 5.24237644668973872331639785751, 5.97461295884355922803633716238, 7.30723429866931472689964347264, 7.67749261006783842106126383978, 8.730553308298672044546006559336, 9.226392509163929571107876139104