L(s) = 1 | + (−1.64 + 0.531i)3-s + (1.20 − 1.88i)5-s − 7-s + (2.43 − 1.75i)9-s + 4.93·11-s − 6.01i·13-s + (−0.990 + 3.74i)15-s − 3.98·17-s − 1.78i·19-s + (1.64 − 0.531i)21-s + 1.63i·23-s + (−2.08 − 4.54i)25-s + (−3.08 + 4.18i)27-s + 1.89i·29-s + 4.73i·31-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.306i)3-s + (0.540 − 0.841i)5-s − 0.377·7-s + (0.811 − 0.583i)9-s + 1.48·11-s − 1.66i·13-s + (−0.255 + 0.966i)15-s − 0.965·17-s − 0.410i·19-s + (0.359 − 0.115i)21-s + 0.341i·23-s + (−0.416 − 0.909i)25-s + (−0.593 + 0.804i)27-s + 0.352i·29-s + 0.850i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.255 + 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.255 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.094916559\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.094916559\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.64 - 0.531i)T \) |
| 5 | \( 1 + (-1.20 + 1.88i)T \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 - 4.93T + 11T^{2} \) |
| 13 | \( 1 + 6.01iT - 13T^{2} \) |
| 17 | \( 1 + 3.98T + 17T^{2} \) |
| 19 | \( 1 + 1.78iT - 19T^{2} \) |
| 23 | \( 1 - 1.63iT - 23T^{2} \) |
| 29 | \( 1 - 1.89iT - 29T^{2} \) |
| 31 | \( 1 - 4.73iT - 31T^{2} \) |
| 37 | \( 1 - 6.52iT - 37T^{2} \) |
| 41 | \( 1 + 9.48iT - 41T^{2} \) |
| 43 | \( 1 - 1.57T + 43T^{2} \) |
| 47 | \( 1 + 8.90iT - 47T^{2} \) |
| 53 | \( 1 - 0.950T + 53T^{2} \) |
| 59 | \( 1 + 12.7T + 59T^{2} \) |
| 61 | \( 1 - 8.59T + 61T^{2} \) |
| 67 | \( 1 + 9.74T + 67T^{2} \) |
| 71 | \( 1 + 3.36T + 71T^{2} \) |
| 73 | \( 1 - 7.68iT - 73T^{2} \) |
| 79 | \( 1 + 16.2iT - 79T^{2} \) |
| 83 | \( 1 + 0.520iT - 83T^{2} \) |
| 89 | \( 1 + 16.1iT - 89T^{2} \) |
| 97 | \( 1 + 8.58iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.059022776198459793257600653974, −8.698786027357841239401331927550, −7.33094751904922135330645781894, −6.51388272127845197471646710687, −5.83367970334950095436929505445, −5.08894916826923152630833863673, −4.28112563503204592828010156084, −3.25930982530738592064069893347, −1.60289897995000403694264530350, −0.49883402267169722735428444117,
1.44529351761405440647065968247, 2.36641711636792987741802349363, 3.91197191982519655246038666438, 4.51638440690830126765698658061, 5.90353377350427462570547114082, 6.48096772664642714120823929746, 6.77326298929765190950527834207, 7.73493164469445774725671489852, 9.217994444163544130015269224368, 9.427888425956445100026480729994