Properties

Label 8-1680e4-1.1-c1e4-0-1
Degree $8$
Conductor $7.966\times 10^{12}$
Sign $1$
Analytic cond. $32385.1$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 10·25-s + 14·49-s + 4·79-s − 8·81-s + 44·109-s − 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 38·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 10·225-s + ⋯
L(s)  = 1  + 1/3·9-s − 2·25-s + 2·49-s + 0.450·79-s − 8/9·81-s + 4.21·109-s − 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.92·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 2/3·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(32385.1\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1733273477\)
\(L(\frac12)\) \(\approx\) \(0.1733273477\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2}( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 29 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2}( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 31 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 149 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.86236835312413898664527206301, −6.17222088708926379418825205322, −6.09812943164351163838147747091, −6.07152747577467004147520299713, −6.02149240353965014746300686090, −5.69808629692375829072147900302, −5.31712709551524249238507716730, −5.05159281374872338844494724729, −4.97478162678790030623157479396, −4.75683133403135700089606486296, −4.52897198952366180722656194167, −4.07953120959303464255623529220, −3.82129032437384323329234736002, −3.81300495629830335409044942467, −3.81058416471280730985409857525, −3.21284286801102683484996634165, −3.00067098886229579902133289545, −2.73555401149597140367336528649, −2.25620305537984466720236272901, −2.22092022367522043124687045394, −2.00229986031107690271895440234, −1.50504930325271593128499519220, −1.06095138631415607151277542737, −0.987091973113866678190838040365, −0.07773403085298341855658311822, 0.07773403085298341855658311822, 0.987091973113866678190838040365, 1.06095138631415607151277542737, 1.50504930325271593128499519220, 2.00229986031107690271895440234, 2.22092022367522043124687045394, 2.25620305537984466720236272901, 2.73555401149597140367336528649, 3.00067098886229579902133289545, 3.21284286801102683484996634165, 3.81058416471280730985409857525, 3.81300495629830335409044942467, 3.82129032437384323329234736002, 4.07953120959303464255623529220, 4.52897198952366180722656194167, 4.75683133403135700089606486296, 4.97478162678790030623157479396, 5.05159281374872338844494724729, 5.31712709551524249238507716730, 5.69808629692375829072147900302, 6.02149240353965014746300686090, 6.07152747577467004147520299713, 6.09812943164351163838147747091, 6.17222088708926379418825205322, 6.86236835312413898664527206301

Graph of the $Z$-function along the critical line