Properties

Label 2-1680-21.20-c1-0-54
Degree $2$
Conductor $1680$
Sign $-0.775 - 0.630i$
Analytic cond. $13.4148$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 − 1.12i)3-s − 5-s + (−2.64 + 0.0644i)7-s + (0.468 + 2.96i)9-s − 2.69i·11-s − 6.61i·13-s + (1.31 + 1.12i)15-s + 7.03·17-s − 3.22i·19-s + (3.55 + 2.89i)21-s − 2.56i·23-s + 25-s + (2.71 − 4.42i)27-s + 8.21i·29-s + 2.87i·31-s + ⋯
L(s)  = 1  + (−0.760 − 0.649i)3-s − 0.447·5-s + (−0.999 + 0.0243i)7-s + (0.156 + 0.987i)9-s − 0.813i·11-s − 1.83i·13-s + (0.340 + 0.290i)15-s + 1.70·17-s − 0.740i·19-s + (0.775 + 0.630i)21-s − 0.534i·23-s + 0.200·25-s + (0.522 − 0.852i)27-s + 1.52i·29-s + 0.515i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-0.775 - 0.630i$
Analytic conductor: \(13.4148\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1680} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1680,\ (\ :1/2),\ -0.775 - 0.630i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2145680289\)
\(L(\frac12)\) \(\approx\) \(0.2145680289\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.31 + 1.12i)T \)
5 \( 1 + T \)
7 \( 1 + (2.64 - 0.0644i)T \)
good11 \( 1 + 2.69iT - 11T^{2} \)
13 \( 1 + 6.61iT - 13T^{2} \)
17 \( 1 - 7.03T + 17T^{2} \)
19 \( 1 + 3.22iT - 19T^{2} \)
23 \( 1 + 2.56iT - 23T^{2} \)
29 \( 1 - 8.21iT - 29T^{2} \)
31 \( 1 - 2.87iT - 31T^{2} \)
37 \( 1 + 6.79T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 + 11.6T + 43T^{2} \)
47 \( 1 + 2.56T + 47T^{2} \)
53 \( 1 - 2.70iT - 53T^{2} \)
59 \( 1 + 3.03T + 59T^{2} \)
61 \( 1 + 7.83iT - 61T^{2} \)
67 \( 1 - 12.5T + 67T^{2} \)
71 \( 1 - 14.0iT - 71T^{2} \)
73 \( 1 - 1.81iT - 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 - 3.01T + 83T^{2} \)
89 \( 1 + 4.17T + 89T^{2} \)
97 \( 1 - 9.55iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.571161610022939733862412314188, −8.106155826242798107741504156131, −7.11041523105580111810965995783, −6.56735350583058846380883257699, −5.45182002295232870441034582088, −5.20459636575916125006799626397, −3.42221530349621730084663114080, −3.01633603573066417763217536679, −1.15103680969589369572104194707, −0.10379604288669846574586553312, 1.67163702372311052267542055782, 3.37408654297291112437919892385, 3.94806290830205367877875884495, 4.86012450451992630628502728538, 5.80159433565197996547213704198, 6.62503022034729893819952559358, 7.21457866608892736746128228780, 8.304411787877344437373555738100, 9.401820927859221862367795635830, 9.851680752406262520431230906228

Graph of the $Z$-function along the critical line