L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 + 0.5i)5-s + (2.26 + 1.36i)7-s + (−0.499 − 0.866i)9-s + (1.87 + 1.08i)11-s + 0.624i·13-s + 0.999i·15-s + (−0.335 − 0.193i)17-s + (−1.76 − 3.04i)19-s + (2.31 − 1.27i)21-s + (3.87 − 2.23i)23-s + (0.499 − 0.866i)25-s − 0.999·27-s + 9.47·29-s + (−4.73 + 8.19i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.387 + 0.223i)5-s + (0.855 + 0.517i)7-s + (−0.166 − 0.288i)9-s + (0.565 + 0.326i)11-s + 0.173i·13-s + 0.258i·15-s + (−0.0812 − 0.0469i)17-s + (−0.403 − 0.699i)19-s + (0.505 − 0.278i)21-s + (0.807 − 0.466i)23-s + (0.0999 − 0.173i)25-s − 0.192·27-s + 1.75·29-s + (−0.850 + 1.47i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.106i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.021903034\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.021903034\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.26 - 1.36i)T \) |
good | 11 | \( 1 + (-1.87 - 1.08i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.624iT - 13T^{2} \) |
| 17 | \( 1 + (0.335 + 0.193i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.76 + 3.04i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.87 + 2.23i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 9.47T + 29T^{2} \) |
| 31 | \( 1 + (4.73 - 8.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.85 - 3.21i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.80iT - 41T^{2} \) |
| 43 | \( 1 - 8.75iT - 43T^{2} \) |
| 47 | \( 1 + (-0.432 - 0.749i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.63 + 11.4i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.30 + 3.99i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.08 + 2.35i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.20 + 4.15i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.64iT - 71T^{2} \) |
| 73 | \( 1 + (-14.2 - 8.22i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.03 + 0.598i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.472T + 83T^{2} \) |
| 89 | \( 1 + (-5.00 + 2.88i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 2.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.098667402356872424101089952020, −8.540686793112557149093447108252, −7.892569068575217596238127916276, −6.86067462362655410551263450169, −6.47953190853361386024485258079, −5.09970661043980946534314852222, −4.49840389424487546576164513500, −3.23369483709111308945440400831, −2.30244415036369917127176802037, −1.14547721278627993371126856742,
0.934629128484154256057823938531, 2.29298765773004070738203738232, 3.65507818899952574072384743400, 4.19144817942142452067050462789, 5.10614554641690082306666833883, 5.99372461522343520948877711686, 7.16912691586844130066370607461, 7.81254195101902438368170084023, 8.641645619180263098540614253796, 9.136732779437458162800567496170