L(s) = 1 | + (0.5 + 0.866i)3-s + (0.866 + 0.5i)5-s + (2.43 + 1.03i)7-s + (−0.499 + 0.866i)9-s + (−1.99 + 1.15i)11-s + 1.49i·13-s + 0.999i·15-s + (−6.54 + 3.77i)17-s + (−0.534 + 0.924i)19-s + (0.321 + 2.62i)21-s + (−0.292 − 0.168i)23-s + (0.499 + 0.866i)25-s − 0.999·27-s − 3.13·29-s + (2.96 + 5.14i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.387 + 0.223i)5-s + (0.920 + 0.391i)7-s + (−0.166 + 0.288i)9-s + (−0.601 + 0.347i)11-s + 0.414i·13-s + 0.258i·15-s + (−1.58 + 0.916i)17-s + (−0.122 + 0.212i)19-s + (0.0700 + 0.573i)21-s + (−0.0609 − 0.0352i)23-s + (0.0999 + 0.173i)25-s − 0.192·27-s − 0.582·29-s + (0.533 + 0.923i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.495 - 0.868i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.495 - 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.731548508\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.731548508\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.43 - 1.03i)T \) |
good | 11 | \( 1 + (1.99 - 1.15i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.49iT - 13T^{2} \) |
| 17 | \( 1 + (6.54 - 3.77i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.534 - 0.924i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.292 + 0.168i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.13T + 29T^{2} \) |
| 31 | \( 1 + (-2.96 - 5.14i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.97 - 3.41i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 1.54iT - 41T^{2} \) |
| 43 | \( 1 + 6.64iT - 43T^{2} \) |
| 47 | \( 1 + (-4.03 + 6.99i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.64 - 4.57i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.04 - 3.53i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.92 + 2.26i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.37 + 4.83i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.444iT - 71T^{2} \) |
| 73 | \( 1 + (1.32 - 0.763i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.67 - 2.70i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.130T + 83T^{2} \) |
| 89 | \( 1 + (-6.84 - 3.95i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.39iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.556390454689008863238178415389, −8.730420603277492149507876759832, −8.300191626738616703496056423393, −7.25640474347204674189227385376, −6.38884847643726994256974971967, −5.39624864874312207887979170265, −4.67959359487334047325787133855, −3.82878757433552501723809608050, −2.48383390382920187222954862848, −1.80788744280844325148454830369,
0.59882889643297953663384613658, 1.96720900163837413197534823197, 2.76481354853165349167850471403, 4.15171418377426924521099691296, 4.97063061107455079563179003137, 5.82549585531245977630180321725, 6.80712664100099100043992821812, 7.58246133061543439436504541857, 8.252388576729954228571088056371, 8.979670647387445327564044865034