L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 + 0.5i)5-s + (1.82 + 1.91i)7-s + (−0.499 − 0.866i)9-s + (−3.23 − 1.86i)11-s − 0.751i·13-s + 0.999i·15-s + (−2.94 − 1.70i)17-s + (−2.41 − 4.18i)19-s + (2.57 − 0.627i)21-s + (−4.01 + 2.31i)23-s + (0.499 − 0.866i)25-s − 0.999·27-s + 0.0618·29-s + (4.77 − 8.27i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.387 + 0.223i)5-s + (0.691 + 0.722i)7-s + (−0.166 − 0.288i)9-s + (−0.976 − 0.563i)11-s − 0.208i·13-s + 0.258i·15-s + (−0.714 − 0.412i)17-s + (−0.554 − 0.959i)19-s + (0.560 − 0.136i)21-s + (−0.837 + 0.483i)23-s + (0.0999 − 0.173i)25-s − 0.192·27-s + 0.0114·29-s + (0.857 − 1.48i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.629 + 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.629 + 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9773503929\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9773503929\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-1.82 - 1.91i)T \) |
good | 11 | \( 1 + (3.23 + 1.86i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.751iT - 13T^{2} \) |
| 17 | \( 1 + (2.94 + 1.70i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.41 + 4.18i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.01 - 2.31i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.0618T + 29T^{2} \) |
| 31 | \( 1 + (-4.77 + 8.27i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.74 + 3.01i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.22iT - 41T^{2} \) |
| 43 | \( 1 + 11.3iT - 43T^{2} \) |
| 47 | \( 1 + (-0.654 - 1.13i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.177 + 0.307i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.68 + 8.11i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.85 + 1.64i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.989 + 0.571i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10.1iT - 71T^{2} \) |
| 73 | \( 1 + (-3.03 - 1.75i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.66 + 0.958i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.86T + 83T^{2} \) |
| 89 | \( 1 + (16.0 - 9.27i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.45iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.834467227786889669610314769833, −8.226929408213317402856177006129, −7.65878881252722777744296128563, −6.74254244519721035182194753756, −5.81460465869199471386605032527, −5.02946505059576275531603944536, −3.97613259839910352103110258962, −2.72735477545499470775841188326, −2.12810155778569812615441305486, −0.34147919843670674875895834113,
1.55609629571434687232570922643, 2.72981396836104479204374614565, 4.02760882956911006923877735799, 4.48250727897288191683909568658, 5.33461155352386202787201025306, 6.51386448532648083867589746945, 7.41638140418737398433545461857, 8.280328770241606842077872207495, 8.514447844136021683246262266880, 9.841743014667075986287831499412