L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.866 − 0.5i)5-s + (2.52 − 0.783i)7-s + (−0.499 − 0.866i)9-s + (3.57 + 2.06i)11-s + 6.61i·13-s + 0.999i·15-s + (0.894 + 0.516i)17-s + (−2.61 − 4.52i)19-s + (−0.585 + 2.58i)21-s + (−2.85 + 1.64i)23-s + (0.499 − 0.866i)25-s + 0.999·27-s + 2.30·29-s + (1.56 − 2.71i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.387 − 0.223i)5-s + (0.955 − 0.295i)7-s + (−0.166 − 0.288i)9-s + (1.07 + 0.622i)11-s + 1.83i·13-s + 0.258i·15-s + (0.217 + 0.125i)17-s + (−0.598 − 1.03i)19-s + (−0.127 + 0.563i)21-s + (−0.595 + 0.343i)23-s + (0.0999 − 0.173i)25-s + 0.192·27-s + 0.428·29-s + (0.281 − 0.488i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.581 - 0.813i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.581 - 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.936293341\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.936293341\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-2.52 + 0.783i)T \) |
good | 11 | \( 1 + (-3.57 - 2.06i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.61iT - 13T^{2} \) |
| 17 | \( 1 + (-0.894 - 0.516i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.61 + 4.52i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.85 - 1.64i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.30T + 29T^{2} \) |
| 31 | \( 1 + (-1.56 + 2.71i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.14 - 7.17i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7.90iT - 41T^{2} \) |
| 43 | \( 1 - 0.130iT - 43T^{2} \) |
| 47 | \( 1 + (5.85 + 10.1i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.829 + 1.43i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.28 - 3.95i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.22 + 4.75i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.66 - 3.27i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.00iT - 71T^{2} \) |
| 73 | \( 1 + (0.175 + 0.101i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.06 + 4.07i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.0T + 83T^{2} \) |
| 89 | \( 1 + (13.0 - 7.54i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.29iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.527376392146728046775300439427, −8.819200007853593982874645070775, −8.024172168825843580025816598295, −6.76118026889966857959080694877, −6.48907543123567235235549185792, −5.14761417397206032851378108683, −4.47033070148446324129204258399, −3.94003744716149074761673065486, −2.24178092054382943937978535616, −1.31448576896490345338927803320,
0.878130072206641989475678996890, 1.98136455005909158861555495399, 3.11686765001514129091127065119, 4.23700226827372907111906947209, 5.46650740059775332873215552833, 5.86632477485670159195715628980, 6.72985895295557832655239096689, 7.88396358543588156266320797936, 8.197727240927520234732710743084, 9.128889352239900139547391682654