Properties

Label 8-1680e4-1.1-c1e4-0-21
Degree $8$
Conductor $7.966\times 10^{12}$
Sign $1$
Analytic cond. $32385.1$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 10·9-s + 8·19-s − 2·25-s + 20·27-s − 8·29-s − 24·31-s + 8·37-s + 24·47-s + 10·49-s + 32·53-s + 32·57-s − 8·75-s + 35·81-s + 8·83-s − 32·87-s − 96·93-s − 16·103-s − 16·109-s + 32·111-s + 16·113-s + 32·121-s + 127-s + 131-s + 137-s + 139-s + 96·141-s + ⋯
L(s)  = 1  + 2.30·3-s + 10/3·9-s + 1.83·19-s − 2/5·25-s + 3.84·27-s − 1.48·29-s − 4.31·31-s + 1.31·37-s + 3.50·47-s + 10/7·49-s + 4.39·53-s + 4.23·57-s − 0.923·75-s + 35/9·81-s + 0.878·83-s − 3.43·87-s − 9.95·93-s − 1.57·103-s − 1.53·109-s + 3.03·111-s + 1.50·113-s + 2.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 8.08·141-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(32385.1\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(12.91293021\)
\(L(\frac12)\) \(\approx\) \(12.91293021\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 32 T^{2} + 498 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 12 T^{2} + 230 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 4 T + 36 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 12 T + 92 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 84 T^{2} + 3590 T^{4} - 84 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 16 T + 164 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 68 T^{2} + 2454 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 4 T^{2} - 4842 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 240 T^{2} + 24098 T^{4} - 240 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 176 T^{2} + 17538 T^{4} - 176 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 - 4 T + 146 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 92 T^{2} + 4134 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 80 T^{2} - 1182 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.02979231427515908749839920800, −6.38026233537271728319648565137, −6.37932063148259777997440768714, −5.86363962019068917424674731006, −5.72067153688330870758177989927, −5.46793899245093913818527163091, −5.44363323381552612792737485364, −5.34151734150130545561819480972, −4.98064491375980754541589763488, −4.47415733994069151318969832395, −4.21041731758539221966250238338, −4.12599431207327027800608773568, −3.85164459909305969337897632948, −3.78156751335638955463648125158, −3.55417028238799648832244519310, −3.19642820142914843569357855982, −3.15444597303540270348037309263, −2.45497332384701383679413938179, −2.42495557116120807989579094508, −2.39393546353079963552168374081, −2.04910447061723562425927026940, −1.59020191859825731891739362254, −1.39731003537580246177117638474, −0.834850455633638483761216298867, −0.57669614586899238532430541941, 0.57669614586899238532430541941, 0.834850455633638483761216298867, 1.39731003537580246177117638474, 1.59020191859825731891739362254, 2.04910447061723562425927026940, 2.39393546353079963552168374081, 2.42495557116120807989579094508, 2.45497332384701383679413938179, 3.15444597303540270348037309263, 3.19642820142914843569357855982, 3.55417028238799648832244519310, 3.78156751335638955463648125158, 3.85164459909305969337897632948, 4.12599431207327027800608773568, 4.21041731758539221966250238338, 4.47415733994069151318969832395, 4.98064491375980754541589763488, 5.34151734150130545561819480972, 5.44363323381552612792737485364, 5.46793899245093913818527163091, 5.72067153688330870758177989927, 5.86363962019068917424674731006, 6.37932063148259777997440768714, 6.38026233537271728319648565137, 7.02979231427515908749839920800

Graph of the $Z$-function along the critical line