L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.0188 + 2.23i)5-s + (2.30 + 1.30i)7-s + 1.00i·9-s + 5.19·11-s + (−0.817 − 0.817i)13-s + (1.59 − 1.56i)15-s + (−0.550 + 0.550i)17-s + 1.30·19-s + (−0.705 − 2.54i)21-s + (3.04 − 3.04i)23-s + (−4.99 − 0.0841i)25-s + (0.707 − 0.707i)27-s + 2.99i·29-s + 3.89i·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.00841 + 0.999i)5-s + (0.870 + 0.492i)7-s + 0.333i·9-s + 1.56·11-s + (−0.226 − 0.226i)13-s + (0.411 − 0.404i)15-s + (−0.133 + 0.133i)17-s + 0.299·19-s + (−0.154 − 0.556i)21-s + (0.635 − 0.635i)23-s + (−0.999 − 0.0168i)25-s + (0.136 − 0.136i)27-s + 0.555i·29-s + 0.699i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 - 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.685 - 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.768395320\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.768395320\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.0188 - 2.23i)T \) |
| 7 | \( 1 + (-2.30 - 1.30i)T \) |
good | 11 | \( 1 - 5.19T + 11T^{2} \) |
| 13 | \( 1 + (0.817 + 0.817i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.550 - 0.550i)T - 17iT^{2} \) |
| 19 | \( 1 - 1.30T + 19T^{2} \) |
| 23 | \( 1 + (-3.04 + 3.04i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.99iT - 29T^{2} \) |
| 31 | \( 1 - 3.89iT - 31T^{2} \) |
| 37 | \( 1 + (-0.199 - 0.199i)T + 37iT^{2} \) |
| 41 | \( 1 + 2.72iT - 41T^{2} \) |
| 43 | \( 1 + (1.98 - 1.98i)T - 43iT^{2} \) |
| 47 | \( 1 + (-4.41 + 4.41i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.09 - 1.09i)T - 53iT^{2} \) |
| 59 | \( 1 + 13.8T + 59T^{2} \) |
| 61 | \( 1 - 10.9iT - 61T^{2} \) |
| 67 | \( 1 + (-10.0 - 10.0i)T + 67iT^{2} \) |
| 71 | \( 1 - 16.2T + 71T^{2} \) |
| 73 | \( 1 + (5.32 + 5.32i)T + 73iT^{2} \) |
| 79 | \( 1 + 8.15iT - 79T^{2} \) |
| 83 | \( 1 + (7.49 + 7.49i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.5T + 89T^{2} \) |
| 97 | \( 1 + (9.70 - 9.70i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.349572134826725694958339203287, −8.685699322919442537105936024907, −7.72812179207716623222453741375, −6.95371778850701645649887261468, −6.38401610779138764679911086615, −5.49294289274078571016518226576, −4.53487079869976636182713286017, −3.45212123040419574211585551670, −2.33544769873909304821057101170, −1.26644581447931516043963039575,
0.846308814619290447623079405706, 1.80146556619391817778123652531, 3.61206730883761348165392855071, 4.37647872842815565225445918140, 4.96293264330401488840914661020, 5.89644678681201144024851268243, 6.82331749061930618817351782269, 7.74132150643654524537934290132, 8.540104619526862158014481981551, 9.437232320501630532695691130870