L(s) = 1 | + (0.707 + 0.707i)3-s + (−1.35 + 1.77i)5-s + (0.498 − 2.59i)7-s + 1.00i·9-s + 1.97·11-s + (−4.59 − 4.59i)13-s + (−2.21 + 0.295i)15-s + (4.07 − 4.07i)17-s + 0.683·19-s + (2.18 − 1.48i)21-s + (−5.64 + 5.64i)23-s + (−1.31 − 4.82i)25-s + (−0.707 + 0.707i)27-s − 5.55i·29-s − 6.08i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.607 + 0.794i)5-s + (0.188 − 0.982i)7-s + 0.333i·9-s + 0.594·11-s + (−1.27 − 1.27i)13-s + (−0.572 + 0.0763i)15-s + (0.988 − 0.988i)17-s + 0.156·19-s + (0.477 − 0.324i)21-s + (−1.17 + 1.17i)23-s + (−0.262 − 0.964i)25-s + (−0.136 + 0.136i)27-s − 1.03i·29-s − 1.09i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.476 + 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.476 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.379782470\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.379782470\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.35 - 1.77i)T \) |
| 7 | \( 1 + (-0.498 + 2.59i)T \) |
good | 11 | \( 1 - 1.97T + 11T^{2} \) |
| 13 | \( 1 + (4.59 + 4.59i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.07 + 4.07i)T - 17iT^{2} \) |
| 19 | \( 1 - 0.683T + 19T^{2} \) |
| 23 | \( 1 + (5.64 - 5.64i)T - 23iT^{2} \) |
| 29 | \( 1 + 5.55iT - 29T^{2} \) |
| 31 | \( 1 + 6.08iT - 31T^{2} \) |
| 37 | \( 1 + (-2.16 - 2.16i)T + 37iT^{2} \) |
| 41 | \( 1 + 9.16iT - 41T^{2} \) |
| 43 | \( 1 + (0.140 - 0.140i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.75 - 1.75i)T - 47iT^{2} \) |
| 53 | \( 1 + (0.681 - 0.681i)T - 53iT^{2} \) |
| 59 | \( 1 - 9.12T + 59T^{2} \) |
| 61 | \( 1 + 2.91iT - 61T^{2} \) |
| 67 | \( 1 + (-7.72 - 7.72i)T + 67iT^{2} \) |
| 71 | \( 1 - 13.9T + 71T^{2} \) |
| 73 | \( 1 + (7.15 + 7.15i)T + 73iT^{2} \) |
| 79 | \( 1 + 12.3iT - 79T^{2} \) |
| 83 | \( 1 + (7.79 + 7.79i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.74T + 89T^{2} \) |
| 97 | \( 1 + (-0.937 + 0.937i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.553800835679237047378832412491, −8.093211292233024963051942356497, −7.63342393400988525831554325700, −7.19581959780022886926393250609, −5.95462598972785880244276873909, −4.97536961463530636100893918490, −3.96514997454727871921479160979, −3.37194523157598936413841766363, −2.34520125172743810393532407140, −0.51417950917264434498513253433,
1.38994238480787659662247165406, 2.32942842499363437928396406921, 3.59686178545555717103587667978, 4.50943293793105105856915827710, 5.31963012880421555976220501997, 6.37412770281767744784579566278, 7.14871394504156965367269936059, 8.192358028918983099422157906459, 8.500225673804346069687516380248, 9.374095154035512096798881198854