L(s) = 1 | + (−0.707 − 0.707i)3-s + (−2.17 + 0.513i)5-s + (−0.659 + 2.56i)7-s + 1.00i·9-s + 1.57·11-s + (−3.14 − 3.14i)13-s + (1.90 + 1.17i)15-s + (−4.47 + 4.47i)17-s + 6.38·19-s + (2.27 − 1.34i)21-s + (−1.38 + 1.38i)23-s + (4.47 − 2.23i)25-s + (0.707 − 0.707i)27-s + 2.19i·29-s − 1.53i·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.973 + 0.229i)5-s + (−0.249 + 0.968i)7-s + 0.333i·9-s + 0.475·11-s + (−0.872 − 0.872i)13-s + (0.491 + 0.303i)15-s + (−1.08 + 1.08i)17-s + 1.46·19-s + (0.497 − 0.293i)21-s + (−0.288 + 0.288i)23-s + (0.894 − 0.446i)25-s + (0.136 − 0.136i)27-s + 0.407i·29-s − 0.276i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.249 + 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.249 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5290788724\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5290788724\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (2.17 - 0.513i)T \) |
| 7 | \( 1 + (0.659 - 2.56i)T \) |
good | 11 | \( 1 - 1.57T + 11T^{2} \) |
| 13 | \( 1 + (3.14 + 3.14i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.47 - 4.47i)T - 17iT^{2} \) |
| 19 | \( 1 - 6.38T + 19T^{2} \) |
| 23 | \( 1 + (1.38 - 1.38i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.19iT - 29T^{2} \) |
| 31 | \( 1 + 1.53iT - 31T^{2} \) |
| 37 | \( 1 + (8.06 + 8.06i)T + 37iT^{2} \) |
| 41 | \( 1 + 4.79iT - 41T^{2} \) |
| 43 | \( 1 + (0.0831 - 0.0831i)T - 43iT^{2} \) |
| 47 | \( 1 + (-3.14 + 3.14i)T - 47iT^{2} \) |
| 53 | \( 1 + (-6.30 + 6.30i)T - 53iT^{2} \) |
| 59 | \( 1 - 7.59T + 59T^{2} \) |
| 61 | \( 1 + 3.73iT - 61T^{2} \) |
| 67 | \( 1 + (-1.84 - 1.84i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.63T + 71T^{2} \) |
| 73 | \( 1 + (-2.46 - 2.46i)T + 73iT^{2} \) |
| 79 | \( 1 + 15.8iT - 79T^{2} \) |
| 83 | \( 1 + (2.70 + 2.70i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.3T + 89T^{2} \) |
| 97 | \( 1 + (-8.82 + 8.82i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.942235196430547259840122762003, −8.345611121788340592297686169400, −7.38862773009007196240447358553, −6.89593573484377195594571941762, −5.79673438125753364456818513215, −5.20174006948170986990479051425, −4.00946011475746626133678406191, −3.08824432615898081222118384053, −1.96698772393444704595999992175, −0.25404171884418864424217620479,
1.04754531631423432665223638878, 2.84998286659689176391646762475, 3.92243733077785165698222990429, 4.52189174198689402672902428883, 5.23169417479920458421841924897, 6.73019410466752249440420122937, 7.02028099033794071510894326793, 7.88198848651309554626472513979, 8.961472934920529092036036208164, 9.567445416729717519855912522697