L(s) = 1 | + (0.707 − 0.707i)3-s + (1.85 − 1.24i)5-s + (−0.707 − 0.707i)7-s − 1.00i·9-s − 1.41i·11-s + (4.28 + 4.28i)13-s + (0.431 − 2.19i)15-s + (−0.944 + 0.944i)17-s + 3.31·19-s − 1.00·21-s + (3.01 − 3.01i)23-s + (1.89 − 4.62i)25-s + (−0.707 − 0.707i)27-s + 6.22i·29-s − 1.49i·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.830 − 0.557i)5-s + (−0.267 − 0.267i)7-s − 0.333i·9-s − 0.426i·11-s + (1.18 + 1.18i)13-s + (0.111 − 0.566i)15-s + (−0.228 + 0.228i)17-s + 0.760·19-s − 0.218·21-s + (0.628 − 0.628i)23-s + (0.378 − 0.925i)25-s + (−0.136 − 0.136i)27-s + 1.15i·29-s − 0.268i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.416330668\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.416330668\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-1.85 + 1.24i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
good | 11 | \( 1 + 1.41iT - 11T^{2} \) |
| 13 | \( 1 + (-4.28 - 4.28i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.944 - 0.944i)T - 17iT^{2} \) |
| 19 | \( 1 - 3.31T + 19T^{2} \) |
| 23 | \( 1 + (-3.01 + 3.01i)T - 23iT^{2} \) |
| 29 | \( 1 - 6.22iT - 29T^{2} \) |
| 31 | \( 1 + 1.49iT - 31T^{2} \) |
| 37 | \( 1 + (-6.31 + 6.31i)T - 37iT^{2} \) |
| 41 | \( 1 - 1.92T + 41T^{2} \) |
| 43 | \( 1 + (0.397 - 0.397i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.48 + 4.48i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.22 + 5.22i)T + 53iT^{2} \) |
| 59 | \( 1 - 0.686T + 59T^{2} \) |
| 61 | \( 1 + 2.34T + 61T^{2} \) |
| 67 | \( 1 + (7.14 + 7.14i)T + 67iT^{2} \) |
| 71 | \( 1 + 11.8iT - 71T^{2} \) |
| 73 | \( 1 + (-4.76 - 4.76i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.33T + 79T^{2} \) |
| 83 | \( 1 + (6.21 - 6.21i)T - 83iT^{2} \) |
| 89 | \( 1 + 2.76iT - 89T^{2} \) |
| 97 | \( 1 + (8.09 - 8.09i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.048355514848159905754214370453, −8.693694335671813451214792511964, −7.68645755083675565504215813432, −6.64471828581104100337680357235, −6.20294517047113483960119109724, −5.17415059400692864831176582537, −4.14215922366506636782859872506, −3.16495614499169194726720929623, −1.95408415085136520206416190459, −1.01171209186827277350851480347,
1.36938044365549323357548010671, 2.75706010139993778341350815451, 3.24730609997366216146939914879, 4.48746133800419308695760591072, 5.57352289802339255175557109864, 6.08838618124740397025080877889, 7.11407741656242478312532377979, 7.957370218785627265198293497796, 8.792447431301104792371316513910, 9.679750245206079909800349180235