L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.970 − 2.01i)5-s + (0.707 + 0.707i)7-s − 1.00i·9-s + 1.41i·11-s + (−1.41 − 1.41i)13-s + (2.11 + 0.738i)15-s + (−4.65 + 4.65i)17-s + 6.75·19-s − 1.00·21-s + (0.546 − 0.546i)23-s + (−3.11 + 3.90i)25-s + (0.707 + 0.707i)27-s + 4.23i·29-s − 3.75i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.433 − 0.900i)5-s + (0.267 + 0.267i)7-s − 0.333i·9-s + 0.426i·11-s + (−0.392 − 0.392i)13-s + (0.544 + 0.190i)15-s + (−1.12 + 1.12i)17-s + 1.54·19-s − 0.218·21-s + (0.113 − 0.113i)23-s + (−0.623 + 0.781i)25-s + (0.136 + 0.136i)27-s + 0.787i·29-s − 0.673i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 - 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.272342752\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.272342752\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.970 + 2.01i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 11 | \( 1 - 1.41iT - 11T^{2} \) |
| 13 | \( 1 + (1.41 + 1.41i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.65 - 4.65i)T - 17iT^{2} \) |
| 19 | \( 1 - 6.75T + 19T^{2} \) |
| 23 | \( 1 + (-0.546 + 0.546i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.23iT - 29T^{2} \) |
| 31 | \( 1 + 3.75iT - 31T^{2} \) |
| 37 | \( 1 + (-7.20 + 7.20i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.29T + 41T^{2} \) |
| 43 | \( 1 + (-0.119 + 0.119i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.16 + 2.16i)T + 47iT^{2} \) |
| 53 | \( 1 + (-6.39 - 6.39i)T + 53iT^{2} \) |
| 59 | \( 1 - 10.5T + 59T^{2} \) |
| 61 | \( 1 - 2.48T + 61T^{2} \) |
| 67 | \( 1 + (-7.75 - 7.75i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.94iT - 71T^{2} \) |
| 73 | \( 1 + (8.87 + 8.87i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.45T + 79T^{2} \) |
| 83 | \( 1 + (-4.53 + 4.53i)T - 83iT^{2} \) |
| 89 | \( 1 - 15.8iT - 89T^{2} \) |
| 97 | \( 1 + (2.26 - 2.26i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.343291305229997528228676647255, −8.730027983834478720307282516243, −7.85074990068046566280270030192, −7.13672347814781276192326352930, −5.91755400464552683558089173457, −5.27495973241516901565001213939, −4.46575101574400577767866224685, −3.73807310951270807700239311680, −2.30406263578224682551545362142, −0.900782511018892446700200374369,
0.71247741697995320861609830806, 2.30479165143303162612853665547, 3.19616007244358144170752838202, 4.35373106112719856123812632600, 5.19871373030160603255056915040, 6.26043815965583435296110232792, 6.99199792329043461799978900299, 7.50870118935260923807565281961, 8.320512061038982239816775277155, 9.428819712606746243649277552791