L(s) = 1 | + (0.707 + 0.707i)3-s + (2.14 − 0.635i)5-s + (−0.707 + 0.707i)7-s + 1.00i·9-s + 1.41i·11-s + (−4.66 + 4.66i)13-s + (1.96 + 1.06i)15-s + (3.52 + 3.52i)17-s − 7.26·19-s − 1.00·21-s + (−2.99 − 2.99i)23-s + (4.19 − 2.72i)25-s + (−0.707 + 0.707i)27-s + 7.18i·29-s + 7.80i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.958 − 0.284i)5-s + (−0.267 + 0.267i)7-s + 0.333i·9-s + 0.426i·11-s + (−1.29 + 1.29i)13-s + (0.507 + 0.275i)15-s + (0.854 + 0.854i)17-s − 1.66·19-s − 0.218·21-s + (−0.625 − 0.625i)23-s + (0.838 − 0.544i)25-s + (−0.136 + 0.136i)27-s + 1.33i·29-s + 1.40i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.312 - 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.312 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.721532241\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.721532241\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-2.14 + 0.635i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
good | 11 | \( 1 - 1.41iT - 11T^{2} \) |
| 13 | \( 1 + (4.66 - 4.66i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.52 - 3.52i)T + 17iT^{2} \) |
| 19 | \( 1 + 7.26T + 19T^{2} \) |
| 23 | \( 1 + (2.99 + 2.99i)T + 23iT^{2} \) |
| 29 | \( 1 - 7.18iT - 29T^{2} \) |
| 31 | \( 1 - 7.80iT - 31T^{2} \) |
| 37 | \( 1 + (-0.824 - 0.824i)T + 37iT^{2} \) |
| 41 | \( 1 + 2.09T + 41T^{2} \) |
| 43 | \( 1 + (3.56 + 3.56i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.31 - 1.31i)T - 47iT^{2} \) |
| 53 | \( 1 + (-6.73 + 6.73i)T - 53iT^{2} \) |
| 59 | \( 1 - 7.63T + 59T^{2} \) |
| 61 | \( 1 - 8.13T + 61T^{2} \) |
| 67 | \( 1 + (-4.41 + 4.41i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.78iT - 71T^{2} \) |
| 73 | \( 1 + (-0.731 + 0.731i)T - 73iT^{2} \) |
| 79 | \( 1 - 13.6T + 79T^{2} \) |
| 83 | \( 1 + (-0.102 - 0.102i)T + 83iT^{2} \) |
| 89 | \( 1 + 8.17iT - 89T^{2} \) |
| 97 | \( 1 + (-9.35 - 9.35i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.697889627679349153915380203925, −8.766407344313998964566471081082, −8.380300947376269577255374899585, −6.98009093617537702046232328886, −6.51402344966327376406665244832, −5.36196741930484058849323946599, −4.70195767920419168719829139031, −3.73924891875202576338828590580, −2.41200974780314702740482100292, −1.79347287838048810511090075809,
0.57099493712826120866042388789, 2.19250459165271927730799558040, 2.78569269896971949145891768624, 3.92074883331050500021832771545, 5.20683354241112886513151595505, 5.91515286217059129463617359665, 6.69537232414618881273283328091, 7.64071965324020766757140442013, 8.134246981397508133062598373721, 9.278329721408880850736360265522