L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 + 0.866i)5-s + (−2.63 − 0.245i)7-s + (−0.499 − 0.866i)9-s + (−1.92 + 3.33i)11-s + 0.209·13-s + 0.999·15-s + (3.66 − 6.34i)17-s + (0.5 + 0.866i)19-s + (−1.52 + 2.15i)21-s + (−3.13 − 5.42i)23-s + (−0.499 + 0.866i)25-s − 0.999·27-s + 3.20·29-s + (5.23 − 9.07i)31-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.223 + 0.387i)5-s + (−0.995 − 0.0927i)7-s + (−0.166 − 0.288i)9-s + (−0.580 + 1.00i)11-s + 0.0580·13-s + 0.258·15-s + (0.888 − 1.53i)17-s + (0.114 + 0.198i)19-s + (−0.333 + 0.471i)21-s + (−0.653 − 1.13i)23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s + 0.595·29-s + (0.940 − 1.62i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.282003381\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.282003381\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.63 + 0.245i)T \) |
good | 11 | \( 1 + (1.92 - 3.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 0.209T + 13T^{2} \) |
| 17 | \( 1 + (-3.66 + 6.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.13 + 5.42i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.20T + 29T^{2} \) |
| 31 | \( 1 + (-5.23 + 9.07i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.95 + 6.84i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.26T + 41T^{2} \) |
| 43 | \( 1 + 2.84T + 43T^{2} \) |
| 47 | \( 1 + (2.73 + 4.74i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.52 + 7.84i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.39 + 7.61i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.42 + 2.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 13.4T + 71T^{2} \) |
| 73 | \( 1 + (5.63 - 9.75i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.179 - 0.311i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 3.20T + 83T^{2} \) |
| 89 | \( 1 + (3.45 + 5.98i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.281425776148190646011415804204, −8.220608010166144566599136092002, −7.42002174491530076948101789093, −6.85900452145187793161710611783, −6.05435457397004477267599158098, −5.10250577106568618688785991673, −3.95466969700081031597230570870, −2.86462696011883405096737668018, −2.22837775637324665941174664900, −0.48088743018928932095811419482,
1.34553656938248704343014882161, 2.94626401559529630655921305362, 3.45820767401382408886681173336, 4.56187965960075036909377890283, 5.69085651456778617351526719646, 6.05605893332825445760503105206, 7.22682618721496326036817573795, 8.372091488934302871446924749902, 8.590569581515778709164756727173, 9.699891815025189627702847350461