# Properties

 Degree $2$ Conductor $1680$ Sign $0.605 - 0.795i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s + (−2 − 1.73i)7-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s + 7·13-s − 0.999·15-s + (2 + 3.46i)17-s + (0.5 − 0.866i)19-s + (0.499 − 2.59i)21-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·27-s − 8·29-s + (3 + 5.19i)31-s + ⋯
 L(s)  = 1 + (0.288 + 0.499i)3-s + (−0.223 + 0.387i)5-s + (−0.755 − 0.654i)7-s + (−0.166 + 0.288i)9-s + (−0.150 − 0.261i)11-s + 1.94·13-s − 0.258·15-s + (0.485 + 0.840i)17-s + (0.114 − 0.198i)19-s + (0.109 − 0.566i)21-s + (0.104 − 0.180i)23-s + (−0.0999 − 0.173i)25-s − 0.192·27-s − 1.48·29-s + (0.538 + 0.933i)31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1680$$    =    $$2^{4} \cdot 3 \cdot 5 \cdot 7$$ Sign: $0.605 - 0.795i$ Motivic weight: $$1$$ Character: $\chi_{1680} (961, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1680,\ (\ :1/2),\ 0.605 - 0.795i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.737288012$$ $$L(\frac12)$$ $$\approx$$ $$1.737288012$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + (-0.5 - 0.866i)T$$
5 $$1 + (0.5 - 0.866i)T$$
7 $$1 + (2 + 1.73i)T$$
good11 $$1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2}$$
13 $$1 - 7T + 13T^{2}$$
17 $$1 + (-2 - 3.46i)T + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2}$$
29 $$1 + 8T + 29T^{2}$$
31 $$1 + (-3 - 5.19i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 + (-1.5 + 2.59i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 - 9T + 41T^{2}$$
43 $$1 - 4T + 43T^{2}$$
47 $$1 + (1.5 - 2.59i)T + (-23.5 - 40.7i)T^{2}$$
53 $$1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (-6 - 10.3i)T + (-29.5 + 51.0i)T^{2}$$
61 $$1 + (-2 + 3.46i)T + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2}$$
71 $$1 - 14T + 71T^{2}$$
73 $$1 + (-7 - 12.1i)T + (-36.5 + 63.2i)T^{2}$$
79 $$1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2}$$
83 $$1 + 12T + 83T^{2}$$
89 $$1 + (-1 + 1.73i)T + (-44.5 - 77.0i)T^{2}$$
97 $$1 + 16T + 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.480497401198091138442506620414, −8.687309517365665087144115677869, −7.992089930100106946891583691678, −7.07737911629179315651648548378, −6.20620881299514860608967374891, −5.54673462980279822339860205102, −3.98760570273129490453574010863, −3.77103974420012038448572195734, −2.74554594674542759618937612781, −1.10077133267677927312309517926, 0.796668093031243616817377443772, 2.11437616740694529608020639293, 3.25994944754442350787060715362, 3.97882251719869522592019268861, 5.36131440446448228118158327346, 6.01366793770760016084888204001, 6.79885697797360055294478179234, 7.81427208947639451250651817126, 8.366840344029233311283527653321, 9.326571567935796344720809965382