L(s) = 1 | + (−2.60 − 1.09i)2-s + (4.05 + 3.24i)3-s + (5.61 + 5.69i)4-s + 13.2i·5-s + (−7.03 − 12.9i)6-s + (18.4 − 1.29i)7-s + (−8.43 − 20.9i)8-s + (5.90 + 26.3i)9-s + (14.4 − 34.5i)10-s + 49.5·11-s + (4.28 + 41.3i)12-s − 28.7·13-s + (−49.6 − 16.7i)14-s + (−42.9 + 53.7i)15-s + (−0.896 + 63.9i)16-s − 69.2·17-s + ⋯ |
L(s) = 1 | + (−0.922 − 0.385i)2-s + (0.780 + 0.624i)3-s + (0.702 + 0.712i)4-s + 1.18i·5-s + (−0.478 − 0.877i)6-s + (0.997 − 0.0700i)7-s + (−0.372 − 0.927i)8-s + (0.218 + 0.975i)9-s + (0.457 − 1.09i)10-s + 1.35·11-s + (0.103 + 0.994i)12-s − 0.614·13-s + (−0.947 − 0.320i)14-s + (−0.740 + 0.924i)15-s + (−0.0140 + 0.999i)16-s − 0.988·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.220 - 0.975i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.25051 + 0.998886i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25051 + 0.998886i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.60 + 1.09i)T \) |
| 3 | \( 1 + (-4.05 - 3.24i)T \) |
| 7 | \( 1 + (-18.4 + 1.29i)T \) |
good | 5 | \( 1 - 13.2iT - 125T^{2} \) |
| 11 | \( 1 - 49.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 28.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + 69.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 24.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 85.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 111.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 236. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 261. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 471.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 261. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 217.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 11.8T + 1.48e5T^{2} \) |
| 59 | \( 1 + 236. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 754.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 163. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 478. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.03e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 148.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 739. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.34e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 183. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.16676297582221350588376604804, −11.10475884105211626010810628495, −10.60515599919751184585574997352, −9.469319209901490561105129559162, −8.662867866773481001135893805229, −7.54903534869228811313531470644, −6.65382522682234895426522944977, −4.42038555020251333644799233445, −3.12576367504354393921901642581, −1.89153882202007935278511666791,
0.985829040925127567039549751118, 2.04283469624498903978965512258, 4.38089830829879989000180147904, 5.89455473715061096986072469385, 7.27128730017936732859120808493, 8.050303520936717992426221661312, 9.138383228851650584637705464220, 9.348510580196324740913050206739, 11.24746523340074607172041629027, 11.98996576248213341982294114690