L(s) = 1 | + (2.17 − 1.80i)2-s + (4.78 + 2.03i)3-s + (1.48 − 7.86i)4-s + (11.2 − 6.48i)5-s + (14.0 − 4.20i)6-s + (−0.198 + 18.5i)7-s + (−10.9 − 19.7i)8-s + (18.7 + 19.4i)9-s + (12.7 − 34.3i)10-s + (11.4 − 19.7i)11-s + (23.0 − 34.5i)12-s − 3.71·13-s + (32.9 + 40.6i)14-s + (66.8 − 8.16i)15-s + (−59.5 − 23.3i)16-s + (−52.8 + 91.4i)17-s + ⋯ |
L(s) = 1 | + (0.769 − 0.638i)2-s + (0.920 + 0.391i)3-s + (0.185 − 0.982i)4-s + (1.00 − 0.579i)5-s + (0.958 − 0.285i)6-s + (−0.0107 + 0.999i)7-s + (−0.484 − 0.874i)8-s + (0.693 + 0.720i)9-s + (0.403 − 1.08i)10-s + (0.312 − 0.541i)11-s + (0.555 − 0.831i)12-s − 0.0792·13-s + (0.629 + 0.776i)14-s + (1.15 − 0.140i)15-s + (−0.931 − 0.364i)16-s + (−0.753 + 1.30i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.54815 - 1.55891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.54815 - 1.55891i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.17 + 1.80i)T \) |
| 3 | \( 1 + (-4.78 - 2.03i)T \) |
| 7 | \( 1 + (0.198 - 18.5i)T \) |
good | 5 | \( 1 + (-11.2 + 6.48i)T + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-11.4 + 19.7i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 3.71T + 2.19e3T^{2} \) |
| 17 | \( 1 + (52.8 - 91.4i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (58.0 + 100. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-54.0 + 31.2i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 57.9T + 2.43e4T^{2} \) |
| 31 | \( 1 + (10.4 + 6.02i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-122. + 70.6i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 417.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 212. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-88.0 - 152. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (201. - 349. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (24.0 + 13.8i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-425. - 737. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (683. + 394. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 482. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-228. - 131. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (71.1 + 123. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 477. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-677. - 1.17e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.36e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56145684861766789527945064382, −11.17867491447074112278992229928, −10.20065407564950082714940552539, −9.086455016073112139432214595879, −8.691620398381900323488709471127, −6.52268482243262899713381323124, −5.43008297472432535939882127991, −4.31979868177774894946555485892, −2.78141375058776095422154603983, −1.76196959828354058428095142471,
2.04590453576689331648919898853, 3.37749009590980761346609898660, 4.67797595079511736078657934503, 6.41140324825854634977431653095, 6.99272596354741865215514699630, 8.029534481883070777166905425620, 9.338150053037601197267884311589, 10.30580283391470790866937327534, 11.76082627137829871217416558276, 13.00371303827196880224968063173