| L(s) = 1 | + (1.08 − 0.911i)2-s + (−1.31 + 1.12i)3-s + (0.338 − 1.97i)4-s + (−1.86 − 3.22i)5-s + (−0.397 + 2.41i)6-s + (2.46 − 0.962i)7-s + (−1.43 − 2.44i)8-s + (0.465 − 2.96i)9-s + (−4.94 − 1.78i)10-s + (2.26 + 1.31i)11-s + (1.77 + 2.97i)12-s + 3.57i·13-s + (1.78 − 3.28i)14-s + (6.07 + 2.14i)15-s + (−3.77 − 1.33i)16-s + (−0.186 − 0.107i)17-s + ⋯ |
| L(s) = 1 | + (0.764 − 0.644i)2-s + (−0.760 + 0.649i)3-s + (0.169 − 0.985i)4-s + (−0.832 − 1.44i)5-s + (−0.162 + 0.986i)6-s + (0.931 − 0.363i)7-s + (−0.505 − 0.862i)8-s + (0.155 − 0.987i)9-s + (−1.56 − 0.565i)10-s + (0.684 + 0.395i)11-s + (0.511 + 0.859i)12-s + 0.990i·13-s + (0.477 − 0.878i)14-s + (1.56 + 0.554i)15-s + (−0.942 − 0.333i)16-s + (−0.0451 − 0.0260i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0239 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0239 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.889918 - 0.911515i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.889918 - 0.911515i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.08 + 0.911i)T \) |
| 3 | \( 1 + (1.31 - 1.12i)T \) |
| 7 | \( 1 + (-2.46 + 0.962i)T \) |
| good | 5 | \( 1 + (1.86 + 3.22i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.26 - 1.31i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.57iT - 13T^{2} \) |
| 17 | \( 1 + (0.186 + 0.107i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.14 + 1.97i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.33 - 4.04i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.57T + 29T^{2} \) |
| 31 | \( 1 + (-4.26 - 2.46i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.31 + 4.22i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.909iT - 41T^{2} \) |
| 43 | \( 1 - 3.73T + 43T^{2} \) |
| 47 | \( 1 + (-0.586 - 1.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.06 + 1.83i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.79 - 3.92i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.301 - 0.173i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.98 - 8.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10.0T + 71T^{2} \) |
| 73 | \( 1 + (-4.45 + 7.71i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (9.70 - 5.60i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.73iT - 83T^{2} \) |
| 89 | \( 1 + (15.4 - 8.93i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8.88T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.23683690667769115300951056189, −11.63093089309651038870706005266, −11.04333463687381138891811673068, −9.611582052891533654876981750311, −8.805121491496200666810731161592, −7.09319179199772663715574778145, −5.51784120446879526608702420651, −4.47355039245478056941110008759, −4.12116243297762397820393428232, −1.21558507659526598765097980844,
2.76832045584968138856812766369, 4.32641733510355934613041539716, 5.76260947889822686391021149597, 6.63153354721632569829210509869, 7.62730412362751043959614652393, 8.295179660138627361192860885194, 10.62314142673119155228371700388, 11.37977159024442697676187350655, 11.95270747470640014827516816232, 13.02790266408827329260805088543