L(s) = 1 | + (−0.321 + 1.37i)2-s + (0.866 − 0.5i)3-s + (−1.79 − 0.886i)4-s + (1.25 − 2.16i)5-s + (0.409 + 1.35i)6-s + (1.36 − 2.26i)7-s + (1.79 − 2.18i)8-s + (0.499 − 0.866i)9-s + (2.58 + 2.42i)10-s + (2.83 + 4.91i)11-s + (−1.99 + 0.128i)12-s − 5.31·13-s + (2.68 + 2.60i)14-s − 2.50i·15-s + (2.42 + 3.17i)16-s + (−0.393 + 0.227i)17-s + ⋯ |
L(s) = 1 | + (−0.227 + 0.973i)2-s + (0.499 − 0.288i)3-s + (−0.896 − 0.443i)4-s + (0.559 − 0.969i)5-s + (0.167 + 0.552i)6-s + (0.515 − 0.857i)7-s + (0.635 − 0.771i)8-s + (0.166 − 0.288i)9-s + (0.816 + 0.765i)10-s + (0.855 + 1.48i)11-s + (−0.576 + 0.0370i)12-s − 1.47·13-s + (0.717 + 0.696i)14-s − 0.646i·15-s + (0.606 + 0.794i)16-s + (−0.0955 + 0.0551i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.212i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.977 - 0.212i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21404 + 0.130268i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21404 + 0.130268i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.321 - 1.37i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-1.36 + 2.26i)T \) |
good | 5 | \( 1 + (-1.25 + 2.16i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.83 - 4.91i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.31T + 13T^{2} \) |
| 17 | \( 1 + (0.393 - 0.227i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.19 + 1.84i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.43 - 2.56i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.57iT - 29T^{2} \) |
| 31 | \( 1 + (-3.00 - 5.20i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.80 + 4.50i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.65iT - 41T^{2} \) |
| 43 | \( 1 - 3.66T + 43T^{2} \) |
| 47 | \( 1 + (0.478 - 0.829i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.41 - 3.12i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (8.76 - 5.06i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.50 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.65 - 8.05i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.35iT - 71T^{2} \) |
| 73 | \( 1 + (-5.93 + 3.42i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.71 + 4.45i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.96iT - 83T^{2} \) |
| 89 | \( 1 + (-5.91 - 3.41i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95311571782810244955272862484, −12.30710142834189814422099189637, −10.40574543548432534870910733206, −9.431764386343007773754796865557, −8.796776526945597875405425801873, −7.41387195559321340748863946379, −6.91675034308258275801277039240, −5.09870952118493913560410267314, −4.37706881657785205073447329229, −1.55779170921265360376648425862,
2.23839602004584759180305868252, 3.20840213741879733696587244230, 4.82264402401981571834606172697, 6.32130755081903175766185151460, 7.998847893492795667748125128753, 8.929012982301880863357105540723, 9.793944497014458397339577503631, 10.79174918927856175330181987389, 11.57494354526810911436523824432, 12.59659785802688249208378666677