L(s) = 1 | + (−0.765 − 1.18i)2-s + (−0.866 − 0.5i)3-s + (−0.829 + 1.82i)4-s + (1.61 + 2.79i)5-s + (0.0679 + 1.41i)6-s + (1.82 − 1.91i)7-s + (2.79 − 0.406i)8-s + (0.499 + 0.866i)9-s + (2.08 − 4.05i)10-s + (−1.10 + 1.91i)11-s + (1.62 − 1.16i)12-s + 5.08·13-s + (−3.67 − 0.709i)14-s − 3.22i·15-s + (−2.62 − 3.01i)16-s + (−2.73 − 1.57i)17-s + ⋯ |
L(s) = 1 | + (−0.541 − 0.840i)2-s + (−0.499 − 0.288i)3-s + (−0.414 + 0.910i)4-s + (0.721 + 1.25i)5-s + (0.0277 + 0.576i)6-s + (0.690 − 0.723i)7-s + (0.989 − 0.143i)8-s + (0.166 + 0.288i)9-s + (0.660 − 1.28i)10-s + (−0.333 + 0.577i)11-s + (0.469 − 0.335i)12-s + 1.40·13-s + (−0.981 − 0.189i)14-s − 0.833i·15-s + (−0.656 − 0.754i)16-s + (−0.663 − 0.383i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.862881 - 0.216362i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.862881 - 0.216362i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.765 + 1.18i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-1.82 + 1.91i)T \) |
good | 5 | \( 1 + (-1.61 - 2.79i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.10 - 1.91i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.08T + 13T^{2} \) |
| 17 | \( 1 + (2.73 + 1.57i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.93 + 1.69i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.65 + 1.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 9.88iT - 29T^{2} \) |
| 31 | \( 1 + (1.01 - 1.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.798 - 0.460i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.96iT - 41T^{2} \) |
| 43 | \( 1 + 6.68T + 43T^{2} \) |
| 47 | \( 1 + (-1.06 - 1.83i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.12 + 1.80i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (10.6 + 6.14i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.34 + 10.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.40 - 7.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 11.7iT - 71T^{2} \) |
| 73 | \( 1 + (-7.82 - 4.51i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (9.60 - 5.54i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.57iT - 83T^{2} \) |
| 89 | \( 1 + (6.32 - 3.65i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 15.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63070280174229893657691606228, −11.16142099909678476994217081368, −10.94956770955400253533629546969, −10.08852635961293709079398560111, −8.801161000493974937788807717860, −7.41608947350037765055555765765, −6.67093032638689193779757240397, −4.91999618863969840880958810356, −3.24801546396605743872641327724, −1.66122061481958067743907575043,
1.38924587952068667682941597031, 4.52420958026014258441722203600, 5.60013939948387039852175779516, 6.10660779280513111240279385604, 8.016566168974895023611594008413, 8.767692146200065868054014188369, 9.518660162827286134526460983060, 10.76448951834187711920805981560, 11.71644255295712518053918577494, 13.19097286036631542391183119036