L(s) = 1 | + (0.582 − 1.28i)2-s + (−0.866 − 0.5i)3-s + (−1.32 − 1.50i)4-s + (−0.128 − 0.222i)5-s + (−1.14 + 0.824i)6-s + (−0.623 − 2.57i)7-s + (−2.70 + 0.828i)8-s + (0.499 + 0.866i)9-s + (−0.362 + 0.0360i)10-s + (1.79 − 3.10i)11-s + (0.393 + 1.96i)12-s − 4.57·13-s + (−3.67 − 0.693i)14-s + 0.257i·15-s + (−0.506 + 3.96i)16-s + (6.92 + 3.99i)17-s + ⋯ |
L(s) = 1 | + (0.411 − 0.911i)2-s + (−0.499 − 0.288i)3-s + (−0.660 − 0.750i)4-s + (−0.0575 − 0.0996i)5-s + (−0.468 + 0.336i)6-s + (−0.235 − 0.971i)7-s + (−0.956 + 0.293i)8-s + (0.166 + 0.288i)9-s + (−0.114 + 0.0113i)10-s + (0.540 − 0.936i)11-s + (0.113 + 0.566i)12-s − 1.27·13-s + (−0.982 − 0.185i)14-s + 0.0664i·15-s + (−0.126 + 0.991i)16-s + (1.68 + 0.970i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 + 0.614i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.788 + 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.335692 - 0.976512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.335692 - 0.976512i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.582 + 1.28i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.623 + 2.57i)T \) |
good | 5 | \( 1 + (0.128 + 0.222i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.79 + 3.10i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4.57T + 13T^{2} \) |
| 17 | \( 1 + (-6.92 - 3.99i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.201 + 0.116i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.76 + 3.32i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.80iT - 29T^{2} \) |
| 31 | \( 1 + (1.03 - 1.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.46 + 3.73i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.55iT - 41T^{2} \) |
| 43 | \( 1 + 5.42T + 43T^{2} \) |
| 47 | \( 1 + (1.42 + 2.46i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.93 + 1.11i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.14 - 1.23i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.44 - 7.69i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.867 - 1.50i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.97iT - 71T^{2} \) |
| 73 | \( 1 + (6.57 + 3.79i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.51 - 4.34i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.79iT - 83T^{2} \) |
| 89 | \( 1 + (2.25 - 1.29i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 14.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45995669163941227107329261655, −11.47340783353877212579919286513, −10.52975780352978355014753191722, −9.818472489451279851420432225839, −8.396644567987704569128838969871, −6.96380803546520227301414966384, −5.72549184855010252548775815091, −4.49426703486363547509261170030, −3.15833217541621921316448591893, −0.999129032479459601524553315695,
3.12073559716391403355490503007, 4.81979180489466703265764988463, 5.52646963464327259202793855549, 6.85945208729380876699444613851, 7.69700590053690780857950942327, 9.327602034338130167354021812889, 9.730099575101252565048046624576, 11.66684585051016685275143730887, 12.19827549681197529320972489529, 13.10031545944983860241548552297