L(s) = 1 | + (−0.185 + 1.40i)2-s − i·3-s + (−1.93 − 0.520i)4-s − 3.84·5-s + (1.40 + 0.185i)6-s + (−1.62 + 2.09i)7-s + (1.08 − 2.61i)8-s − 9-s + (0.713 − 5.38i)10-s − 4.54·11-s + (−0.520 + 1.93i)12-s + 1.81·13-s + (−2.63 − 2.66i)14-s + 3.84i·15-s + (3.45 + 2.00i)16-s + 3.49i·17-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.991i)2-s − 0.577i·3-s + (−0.965 − 0.260i)4-s − 1.71·5-s + (0.572 + 0.0757i)6-s + (−0.612 + 0.790i)7-s + (0.384 − 0.923i)8-s − 0.333·9-s + (0.225 − 1.70i)10-s − 1.37·11-s + (−0.150 + 0.557i)12-s + 0.503·13-s + (−0.702 − 0.711i)14-s + 0.992i·15-s + (0.864 + 0.502i)16-s + 0.846i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.869 + 0.493i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.869 + 0.493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0257874 - 0.0976357i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0257874 - 0.0976357i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.185 - 1.40i)T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 + (1.62 - 2.09i)T \) |
good | 5 | \( 1 + 3.84T + 5T^{2} \) |
| 11 | \( 1 + 4.54T + 11T^{2} \) |
| 13 | \( 1 - 1.81T + 13T^{2} \) |
| 17 | \( 1 - 3.49iT - 17T^{2} \) |
| 19 | \( 1 + 1.68iT - 19T^{2} \) |
| 23 | \( 1 + 5.00iT - 23T^{2} \) |
| 29 | \( 1 - 1.81iT - 29T^{2} \) |
| 31 | \( 1 + 5.34T + 31T^{2} \) |
| 37 | \( 1 - 1.42iT - 37T^{2} \) |
| 41 | \( 1 - 8.97iT - 41T^{2} \) |
| 43 | \( 1 + 8.03T + 43T^{2} \) |
| 47 | \( 1 + 4.83T + 47T^{2} \) |
| 53 | \( 1 + 5.87iT - 53T^{2} \) |
| 59 | \( 1 - 8.46iT - 59T^{2} \) |
| 61 | \( 1 + 3.01T + 61T^{2} \) |
| 67 | \( 1 + 4.42T + 67T^{2} \) |
| 71 | \( 1 + 1.47iT - 71T^{2} \) |
| 73 | \( 1 - 6.98iT - 73T^{2} \) |
| 79 | \( 1 - 2.97iT - 79T^{2} \) |
| 83 | \( 1 + 10.5iT - 83T^{2} \) |
| 89 | \( 1 + 15.9iT - 89T^{2} \) |
| 97 | \( 1 + 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.07041496023963631787894708093, −12.74779317426382422451297583188, −11.53609492621542515281845624219, −10.34609520021505854337183603718, −8.700182990398512730828536666307, −8.189295089792743721717645877646, −7.24574253539907595475908731054, −6.16561534818555335967881264446, −4.82078530749890684424281534468, −3.30961397713345555387604849993,
0.096952769108891781697760662025, 3.20495338755381160887131786823, 3.93876544525517381672657956710, 5.13833608884063475774841035704, 7.40163621280048494032855683114, 8.141103272371197522874845914607, 9.386281923816895810023828589746, 10.49937289026895400304107329452, 11.10515910150750894844860967840, 12.01059727579875992327932603783