L(s) = 1 | + (0.733 + 1.20i)2-s + i·3-s + (−0.924 + 1.77i)4-s − 1.12·5-s + (−1.20 + 0.733i)6-s + (−2.11 + 1.59i)7-s + (−2.82 + 0.181i)8-s − 9-s + (−0.826 − 1.36i)10-s + 5.11·11-s + (−1.77 − 0.924i)12-s + 5.88·13-s + (−3.47 − 1.38i)14-s − 1.12i·15-s + (−2.28 − 3.28i)16-s − 3.31i·17-s + ⋯ |
L(s) = 1 | + (0.518 + 0.855i)2-s + 0.577i·3-s + (−0.462 + 0.886i)4-s − 0.504·5-s + (−0.493 + 0.299i)6-s + (−0.798 + 0.601i)7-s + (−0.997 + 0.0641i)8-s − 0.333·9-s + (−0.261 − 0.431i)10-s + 1.54·11-s + (−0.511 − 0.267i)12-s + 1.63·13-s + (−0.928 − 0.371i)14-s − 0.291i·15-s + (−0.572 − 0.820i)16-s − 0.804i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.525974 + 1.14528i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.525974 + 1.14528i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.733 - 1.20i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 + (2.11 - 1.59i)T \) |
good | 5 | \( 1 + 1.12T + 5T^{2} \) |
| 11 | \( 1 - 5.11T + 11T^{2} \) |
| 13 | \( 1 - 5.88T + 13T^{2} \) |
| 17 | \( 1 + 3.31iT - 17T^{2} \) |
| 19 | \( 1 - 7.49iT - 19T^{2} \) |
| 23 | \( 1 + 1.73iT - 23T^{2} \) |
| 29 | \( 1 + 5.88iT - 29T^{2} \) |
| 31 | \( 1 - 6.04T + 31T^{2} \) |
| 37 | \( 1 - 1.65iT - 37T^{2} \) |
| 41 | \( 1 + 1.45iT - 41T^{2} \) |
| 43 | \( 1 - 1.79T + 43T^{2} \) |
| 47 | \( 1 + 5.56T + 47T^{2} \) |
| 53 | \( 1 + 3.62iT - 53T^{2} \) |
| 59 | \( 1 + 0.767iT - 59T^{2} \) |
| 61 | \( 1 - 0.317T + 61T^{2} \) |
| 67 | \( 1 + 6.56T + 67T^{2} \) |
| 71 | \( 1 - 10.1iT - 71T^{2} \) |
| 73 | \( 1 + 6.63iT - 73T^{2} \) |
| 79 | \( 1 + 3.01iT - 79T^{2} \) |
| 83 | \( 1 + 16.0iT - 83T^{2} \) |
| 89 | \( 1 - 8.08iT - 89T^{2} \) |
| 97 | \( 1 + 0.357iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.37795199389568511373366600090, −12.06777352181974034734144310911, −11.60511377965772297473491505208, −9.869514416960885495878501288896, −8.928010651791116866662067708716, −8.071195601905205778378691537091, −6.48525634715945028509319285099, −5.88468310230999011218109607310, −4.17288677036512002759694033689, −3.43566717239621721667127941098,
1.19762532828351337275529244831, 3.32503399541183936896278137793, 4.21159672078248039943685690187, 6.10349341769786237560683828621, 6.83944041163827527604915229393, 8.572279089344954521088418682272, 9.454462978210158029675894910563, 10.83518254955454077029469075701, 11.47824488224394112962636111405, 12.45148535129843470724033481712