| L(s) = 1 | + (1.36 + 0.378i)2-s + (−0.866 + 0.5i)3-s + (1.71 + 1.03i)4-s + (−0.586 − 0.338i)5-s + (−1.36 + 0.353i)6-s + (2.23 + 1.41i)7-s + (1.94 + 2.05i)8-s + (0.499 − 0.866i)9-s + (−0.670 − 0.683i)10-s + (−1.44 + 0.835i)11-s + (−1.99 − 0.0372i)12-s − 1.28i·13-s + (2.51 + 2.77i)14-s + 0.677·15-s + (1.86 + 3.53i)16-s + (−3.18 − 5.51i)17-s + ⋯ |
| L(s) = 1 | + (0.963 + 0.267i)2-s + (−0.499 + 0.288i)3-s + (0.856 + 0.516i)4-s + (−0.262 − 0.151i)5-s + (−0.559 + 0.144i)6-s + (0.845 + 0.534i)7-s + (0.687 + 0.726i)8-s + (0.166 − 0.288i)9-s + (−0.212 − 0.216i)10-s + (−0.436 + 0.251i)11-s + (−0.577 − 0.0107i)12-s − 0.355i·13-s + (0.671 + 0.740i)14-s + 0.174·15-s + (0.467 + 0.884i)16-s + (−0.771 − 1.33i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.58147 + 0.651037i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.58147 + 0.651037i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.36 - 0.378i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.23 - 1.41i)T \) |
| good | 5 | \( 1 + (0.586 + 0.338i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.44 - 0.835i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.28iT - 13T^{2} \) |
| 17 | \( 1 + (3.18 + 5.51i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.20 + 1.27i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.127 + 0.221i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.27iT - 29T^{2} \) |
| 31 | \( 1 + (-2.14 - 3.71i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.62 - 3.24i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.43T + 41T^{2} \) |
| 43 | \( 1 + 5.48iT - 43T^{2} \) |
| 47 | \( 1 + (4.73 - 8.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.91 - 2.83i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-8.74 + 5.04i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-13.2 - 7.62i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (13.6 - 7.88i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.48T + 71T^{2} \) |
| 73 | \( 1 + (1.43 + 2.48i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.09 + 10.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.63iT - 83T^{2} \) |
| 89 | \( 1 + (3.40 - 5.89i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 0.477T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91047387235865795973036899777, −11.81780819786675920997023264618, −11.39487623894842030274601924970, −10.19792899924924259931888714533, −8.606718089868118682868997527929, −7.56461302192876551164364726508, −6.30868948499760051334442230539, −5.10659930076959644255770885796, −4.40662245830030807811798035504, −2.54260355066980171573933139323,
1.82510339186801720882403117497, 3.80866992738194842329078913366, 4.90717891496742138359044280378, 6.12046652038525332502149529650, 7.18756511063491092577208708576, 8.295579655620457729469527490440, 10.18749891798999624080205111085, 11.05066915036678291643565203793, 11.57498894120481762233548966000, 12.81264997098511460539761683386