| L(s) = 1 | + (1.06 − 0.926i)2-s + (−0.866 + 0.5i)3-s + (0.283 − 1.97i)4-s + (1.23 + 0.710i)5-s + (−0.462 + 1.33i)6-s + (1.39 − 2.24i)7-s + (−1.53 − 2.37i)8-s + (0.499 − 0.866i)9-s + (1.97 − 0.380i)10-s + (0.832 − 0.480i)11-s + (0.744 + 1.85i)12-s + 3.57i·13-s + (−0.591 − 3.69i)14-s − 1.42·15-s + (−3.83 − 1.12i)16-s + (2.43 + 4.20i)17-s + ⋯ |
| L(s) = 1 | + (0.755 − 0.655i)2-s + (−0.499 + 0.288i)3-s + (0.141 − 0.989i)4-s + (0.550 + 0.317i)5-s + (−0.188 + 0.545i)6-s + (0.527 − 0.849i)7-s + (−0.541 − 0.840i)8-s + (0.166 − 0.288i)9-s + (0.624 − 0.120i)10-s + (0.251 − 0.144i)11-s + (0.214 + 0.535i)12-s + 0.990i·13-s + (−0.158 − 0.987i)14-s − 0.366·15-s + (−0.959 − 0.280i)16-s + (0.589 + 1.02i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.567 + 0.823i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.39486 - 0.732704i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.39486 - 0.732704i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.06 + 0.926i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-1.39 + 2.24i)T \) |
| good | 5 | \( 1 + (-1.23 - 0.710i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.832 + 0.480i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.57iT - 13T^{2} \) |
| 17 | \( 1 + (-2.43 - 4.20i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.28 + 3.62i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.72 - 4.71i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.78iT - 29T^{2} \) |
| 31 | \( 1 + (-3.67 - 6.36i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.21 + 1.27i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.20T + 41T^{2} \) |
| 43 | \( 1 + 4.45iT - 43T^{2} \) |
| 47 | \( 1 + (-0.211 + 0.366i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-8.41 + 4.85i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.43 - 3.71i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.67 + 0.969i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.13 + 5.27i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.12T + 71T^{2} \) |
| 73 | \( 1 + (4.99 + 8.65i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.139 + 0.241i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.69iT - 83T^{2} \) |
| 89 | \( 1 + (1.07 - 1.86i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 9.44T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56938799573385822260296796761, −11.59794928609560572797844017696, −10.66938907174795992085567241283, −10.17404307825091949215976524546, −8.845250219924906789569927773915, −6.95895049091423565926152396937, −6.06226850533182893124367720123, −4.74978252213797943997544664611, −3.74389886061002782203515620520, −1.74584887351419321447524190920,
2.40801582588983615246315232067, 4.42291174415563444965057170276, 5.60503736468337330638990003906, 6.17931095861044432270347987797, 7.69378116255904908285601255340, 8.526735058395248902301919858452, 9.922471033530278224588784205069, 11.36465892091140496956468604458, 12.22295540045060281554045949821, 12.88619981005053379271428299957