Properties

Label 2-1650-165.164-c1-0-13
Degree $2$
Conductor $1650$
Sign $-0.772 - 0.634i$
Analytic cond. $13.1753$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−1.73 + 0.0828i)3-s − 4-s + (−0.0828 − 1.73i)6-s − 4.34·7-s i·8-s + (2.98 − 0.286i)9-s + (−1.20 − 3.09i)11-s + (1.73 − 0.0828i)12-s + 4.51·13-s − 4.34i·14-s + 16-s + 2.72i·17-s + (0.286 + 2.98i)18-s − 3.97i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + (−0.998 + 0.0478i)3-s − 0.5·4-s + (−0.0338 − 0.706i)6-s − 1.64·7-s − 0.353i·8-s + (0.995 − 0.0956i)9-s + (−0.363 − 0.931i)11-s + (0.499 − 0.0239i)12-s + 1.25·13-s − 1.16i·14-s + 0.250·16-s + 0.659i·17-s + (0.0676 + 0.703i)18-s − 0.911i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 - 0.634i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.772 - 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-0.772 - 0.634i$
Analytic conductor: \(13.1753\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1650} (1649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1650,\ (\ :1/2),\ -0.772 - 0.634i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4927807942\)
\(L(\frac12)\) \(\approx\) \(0.4927807942\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + (1.73 - 0.0828i)T \)
5 \( 1 \)
11 \( 1 + (1.20 + 3.09i)T \)
good7 \( 1 + 4.34T + 7T^{2} \)
13 \( 1 - 4.51T + 13T^{2} \)
17 \( 1 - 2.72iT - 17T^{2} \)
19 \( 1 + 3.97iT - 19T^{2} \)
23 \( 1 - 1.66T + 23T^{2} \)
29 \( 1 + 5.08T + 29T^{2} \)
31 \( 1 - 9.74T + 31T^{2} \)
37 \( 1 - 5.60iT - 37T^{2} \)
41 \( 1 + 2.92T + 41T^{2} \)
43 \( 1 + 3.25T + 43T^{2} \)
47 \( 1 + 9.25T + 47T^{2} \)
53 \( 1 + 3.05T + 53T^{2} \)
59 \( 1 - 5.43iT - 59T^{2} \)
61 \( 1 - 11.5iT - 61T^{2} \)
67 \( 1 + 12.3iT - 67T^{2} \)
71 \( 1 - 3.60iT - 71T^{2} \)
73 \( 1 + 1.36T + 73T^{2} \)
79 \( 1 - 1.07iT - 79T^{2} \)
83 \( 1 - 14.5iT - 83T^{2} \)
89 \( 1 + 3.75iT - 89T^{2} \)
97 \( 1 - 12.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.697892898293679402647779463697, −8.863304968500249200499693200160, −8.077152104933055202114491593586, −6.89680483927801344966159944794, −6.35590173078605925217812017800, −5.94836983238186773663523726721, −4.98277729794460876762127390047, −3.86575580874103757297644814147, −3.07936742138287968456641472600, −0.963922454946368981265279200197, 0.28245256474278655269830147612, 1.68309073028164611961435363809, 3.07932777942260336305572560686, 3.89747461208879109168258011985, 4.87902338286238352711062973190, 5.86542322732774963645063702573, 6.49470658668970036419652319868, 7.28793556273717314858716800032, 8.384993382986769199166957806193, 9.586551795089795615804897814923

Graph of the $Z$-function along the critical line