L(s) = 1 | − i·2-s + (1.03 − 1.38i)3-s − 4-s + (−1.38 − 1.03i)6-s + 0.394·7-s + i·8-s + (−0.847 − 2.87i)9-s + (3.26 − 0.584i)11-s + (−1.03 + 1.38i)12-s + 2.37·13-s − 0.394i·14-s + 16-s − 0.906i·17-s + (−2.87 + 0.847i)18-s − 3.69i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.598 − 0.800i)3-s − 0.5·4-s + (−0.566 − 0.423i)6-s + 0.148·7-s + 0.353i·8-s + (−0.282 − 0.959i)9-s + (0.984 − 0.176i)11-s + (−0.299 + 0.400i)12-s + 0.660·13-s − 0.105i·14-s + 0.250·16-s − 0.219i·17-s + (−0.678 + 0.199i)18-s − 0.847i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.800 + 0.598i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.800 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.056927581\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.056927581\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-1.03 + 1.38i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-3.26 + 0.584i)T \) |
good | 7 | \( 1 - 0.394T + 7T^{2} \) |
| 13 | \( 1 - 2.37T + 13T^{2} \) |
| 17 | \( 1 + 0.906iT - 17T^{2} \) |
| 19 | \( 1 + 3.69iT - 19T^{2} \) |
| 23 | \( 1 + 3.54T + 23T^{2} \) |
| 29 | \( 1 - 3.37T + 29T^{2} \) |
| 31 | \( 1 - 3.66T + 31T^{2} \) |
| 37 | \( 1 + 4.58iT - 37T^{2} \) |
| 41 | \( 1 - 8.14T + 41T^{2} \) |
| 43 | \( 1 - 2.60T + 43T^{2} \) |
| 47 | \( 1 + 3.39T + 47T^{2} \) |
| 53 | \( 1 + 6.45T + 53T^{2} \) |
| 59 | \( 1 - 7.76iT - 59T^{2} \) |
| 61 | \( 1 + 12.8iT - 61T^{2} \) |
| 67 | \( 1 + 11.9iT - 67T^{2} \) |
| 71 | \( 1 + 2.58iT - 71T^{2} \) |
| 73 | \( 1 + 11.8T + 73T^{2} \) |
| 79 | \( 1 + 2.56iT - 79T^{2} \) |
| 83 | \( 1 - 1.69iT - 83T^{2} \) |
| 89 | \( 1 - 15.3iT - 89T^{2} \) |
| 97 | \( 1 + 10.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.128670516011751685804575648671, −8.357892646436144219168594548857, −7.65337682535684144363831500729, −6.60531620594539569249070979757, −6.01063360160669799488454049497, −4.65131192433164714883185137642, −3.74006015236988721022689573711, −2.86818276742126678783771842118, −1.82182435348730054007158473177, −0.793482758599529785619531680051,
1.53858614625961826600836821076, 3.03766195127233239759620578189, 4.03764309541146021828920527831, 4.53848128498747076499566256621, 5.72661851154128928536851473072, 6.36432912090745553003598892175, 7.44119988982237410263284117349, 8.295989477195855550597403891785, 8.689332254301655999799041068215, 9.673827594660648382559338850851