L(s) = 1 | − i·2-s + (−0.117 + 1.72i)3-s − 4-s + (1.72 + 0.117i)6-s + 0.723·7-s + i·8-s + (−2.97 − 0.404i)9-s + (−2.32 + 2.36i)11-s + (0.117 − 1.72i)12-s − 4.17·13-s − 0.723i·14-s + 16-s − 4.49i·17-s + (−0.404 + 2.97i)18-s − 7.94i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.0675 + 0.997i)3-s − 0.5·4-s + (0.705 + 0.0477i)6-s + 0.273·7-s + 0.353i·8-s + (−0.990 − 0.134i)9-s + (−0.700 + 0.713i)11-s + (0.0337 − 0.498i)12-s − 1.15·13-s − 0.193i·14-s + 0.250·16-s − 1.09i·17-s + (−0.0953 + 0.700i)18-s − 1.82i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.260 + 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.260 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.098126541\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.098126541\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.117 - 1.72i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (2.32 - 2.36i)T \) |
good | 7 | \( 1 - 0.723T + 7T^{2} \) |
| 13 | \( 1 + 4.17T + 13T^{2} \) |
| 17 | \( 1 + 4.49iT - 17T^{2} \) |
| 19 | \( 1 + 7.94iT - 19T^{2} \) |
| 23 | \( 1 - 8.91T + 23T^{2} \) |
| 29 | \( 1 - 4.98T + 29T^{2} \) |
| 31 | \( 1 + 5.85T + 31T^{2} \) |
| 37 | \( 1 + 5.54iT - 37T^{2} \) |
| 41 | \( 1 - 3.53T + 41T^{2} \) |
| 43 | \( 1 - 10.4T + 43T^{2} \) |
| 47 | \( 1 - 4.44T + 47T^{2} \) |
| 53 | \( 1 - 2.41T + 53T^{2} \) |
| 59 | \( 1 - 9.71iT - 59T^{2} \) |
| 61 | \( 1 - 2.59iT - 61T^{2} \) |
| 67 | \( 1 + 9.24iT - 67T^{2} \) |
| 71 | \( 1 + 3.54iT - 71T^{2} \) |
| 73 | \( 1 - 4.56T + 73T^{2} \) |
| 79 | \( 1 - 11.1iT - 79T^{2} \) |
| 83 | \( 1 + 15.3iT - 83T^{2} \) |
| 89 | \( 1 + 2.10iT - 89T^{2} \) |
| 97 | \( 1 - 8.27iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.209858376957065385616934076900, −8.976824877754442342753547487691, −7.59245887396753782739699216951, −7.00793572120850637081656744902, −5.42629158745843232139065574210, −4.88839838743372078744666148917, −4.37009315272983167449666064514, −2.89320129885354683212998858087, −2.51714661709147801143245260106, −0.48345378165206270929817310047,
1.12426172286315738350836363390, 2.45473898273040668014930829026, 3.56853203797949643990171380632, 4.92978613152578962618001317312, 5.62492876843059739342262819946, 6.34421396180474545561544118872, 7.23862382704027705557898584708, 7.899594123473216985530427580933, 8.389497902657683676707999649822, 9.274820427211129488741467425928