| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (2.18 + 1.26i)5-s + (1.47 − 2.19i)7-s + 0.999i·8-s + (1.26 + 2.18i)10-s + (4.88 − 2.82i)11-s + (−3.13 + 1.78i)13-s + (2.37 − 1.16i)14-s + (−0.5 + 0.866i)16-s + (−0.123 − 0.214i)17-s + (2.70 + 1.56i)19-s + 2.52i·20-s + 5.64·22-s + (1.80 − 3.11i)23-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.976 + 0.563i)5-s + (0.556 − 0.830i)7-s + 0.353i·8-s + (0.398 + 0.690i)10-s + (1.47 − 0.850i)11-s + (−0.869 + 0.493i)13-s + (0.634 − 0.311i)14-s + (−0.125 + 0.216i)16-s + (−0.0300 − 0.0519i)17-s + (0.620 + 0.358i)19-s + 0.563i·20-s + 1.20·22-s + (0.375 − 0.650i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.871 - 0.490i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.871 - 0.490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.323509946\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.323509946\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.47 + 2.19i)T \) |
| 13 | \( 1 + (3.13 - 1.78i)T \) |
| good | 5 | \( 1 + (-2.18 - 1.26i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.88 + 2.82i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.123 + 0.214i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.70 - 1.56i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.80 + 3.11i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.24T + 29T^{2} \) |
| 31 | \( 1 + (5.30 - 3.06i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (7.01 + 4.05i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.59iT - 41T^{2} \) |
| 43 | \( 1 - 5.56T + 43T^{2} \) |
| 47 | \( 1 + (-5.78 - 3.34i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.28 - 5.68i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.89 - 3.97i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.39 - 11.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.5 - 6.09i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.06iT - 71T^{2} \) |
| 73 | \( 1 + (-6.81 + 3.93i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.22 + 5.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 0.662iT - 83T^{2} \) |
| 89 | \( 1 + (4.86 + 2.81i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.8iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.280928623256186749772328939554, −8.791349087730665969005798522658, −7.47812867779085870482094511461, −6.99558357667702835191271971991, −6.20740632673236425508058776775, −5.46449297286156389567502800793, −4.42169087441776567386573157913, −3.64739343458266774562040236971, −2.50322736386390718843831897675, −1.31519497827798729815440284205,
1.39136501508414463369010968506, 2.09049905965539102848108306459, 3.24035728148014023280102663890, 4.54600424443631369379860366169, 5.12043997832125658012239870747, 5.83169858022709445080565964475, 6.72695991454860571974915540265, 7.64044059835103243972598311104, 8.823359141434014416775482268616, 9.476927619813795088861513554903