L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.294 + 0.169i)5-s + (0.420 + 2.61i)7-s − 0.999i·8-s + (−0.169 + 0.294i)10-s + (0.571 + 0.330i)11-s + (0.660 + 3.54i)13-s + (1.66 + 2.05i)14-s + (−0.5 − 0.866i)16-s + (−3.27 + 5.66i)17-s + (−5.27 + 3.04i)19-s + 0.339i·20-s + 0.660·22-s + (−3.71 − 6.43i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.131 + 0.0759i)5-s + (0.158 + 0.987i)7-s − 0.353i·8-s + (−0.0537 + 0.0930i)10-s + (0.172 + 0.0995i)11-s + (0.183 + 0.983i)13-s + (0.446 + 0.548i)14-s + (−0.125 − 0.216i)16-s + (−0.793 + 1.37i)17-s + (−1.20 + 0.698i)19-s + 0.0759i·20-s + 0.140·22-s + (−0.774 − 1.34i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.240 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.240 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.809298141\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.809298141\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.420 - 2.61i)T \) |
| 13 | \( 1 + (-0.660 - 3.54i)T \) |
good | 5 | \( 1 + (0.294 - 0.169i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.571 - 0.330i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.27 - 5.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.27 - 3.04i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.71 + 6.43i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.56T + 29T^{2} \) |
| 31 | \( 1 + (-3.46 - 2i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.06 - 1.77i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 0.864iT - 41T^{2} \) |
| 43 | \( 1 + 5.08T + 43T^{2} \) |
| 47 | \( 1 + (-8.18 + 4.72i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.5 + 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.38 - 1.95i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.932 + 1.61i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.45 - 3.72i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.884iT - 71T^{2} \) |
| 73 | \( 1 + (-8.72 - 5.03i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.22 - 10.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 16.2iT - 83T^{2} \) |
| 89 | \( 1 + (3.85 - 2.22i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 16.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639397193751639402423134833421, −8.492967245606354398182019224779, −8.384550026061377510153122653069, −6.71737464443858643075025136908, −6.36832152566709628690340340426, −5.43686468373993373678454142948, −4.36353804688330375974993719552, −3.81733526182766304205288585873, −2.40338515878616116806813531379, −1.76127898611439442804718193400,
0.53389473310578936467946093810, 2.25898978651422428438905230927, 3.39119078836661350860954142230, 4.29757154778344214004298001584, 4.93677548610591519176205347954, 6.01663462071287009135373577621, 6.77531517350130524530813040885, 7.55600349741664224825157666652, 8.192665773674632495395269328024, 9.117176339651219652897369867896