L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−2.25 + 1.30i)5-s + (−1.49 + 2.18i)7-s + 0.999i·8-s + (1.30 − 2.25i)10-s + (−3.11 − 1.80i)11-s + (3.60 + 0.167i)13-s + (0.199 − 2.63i)14-s + (−0.5 − 0.866i)16-s + (−1.41 + 2.45i)17-s + (−1.15 + 0.667i)19-s + 2.60i·20-s + 3.60·22-s + (1.46 + 2.54i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−1.00 + 0.581i)5-s + (−0.563 + 0.825i)7-s + 0.353i·8-s + (0.411 − 0.712i)10-s + (−0.940 − 0.542i)11-s + (0.998 + 0.0463i)13-s + (0.0532 − 0.705i)14-s + (−0.125 − 0.216i)16-s + (−0.343 + 0.595i)17-s + (−0.265 + 0.153i)19-s + 0.581i·20-s + 0.767·22-s + (0.306 + 0.530i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2569481689\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2569481689\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.49 - 2.18i)T \) |
| 13 | \( 1 + (-3.60 - 0.167i)T \) |
good | 5 | \( 1 + (2.25 - 1.30i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.11 + 1.80i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.41 - 2.45i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.15 - 0.667i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.46 - 2.54i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.97T + 29T^{2} \) |
| 31 | \( 1 + (3.46 + 2i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.144 - 0.0835i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.03iT - 41T^{2} \) |
| 43 | \( 1 - 2.33T + 43T^{2} \) |
| 47 | \( 1 + (-8.43 + 4.87i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.5 + 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-10.0 - 5.78i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.01 + 3.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.1 - 5.87i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.76iT - 71T^{2} \) |
| 73 | \( 1 + (9.93 + 5.73i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.37 + 5.83i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8.10iT - 83T^{2} \) |
| 89 | \( 1 + (-7.07 + 4.08i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 0.139iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.951713620225498864888724858211, −8.514693776039975450326191834178, −7.63879927449396571433228452530, −7.03068967133564280931138429152, −5.94718075399196829867784207344, −5.52934563241527913935989449695, −3.95093708185205065199882821064, −3.23076453172593429965477085329, −2.04341558849532117051707766742, −0.15154815600555986353601338623,
0.949066713908425135246466670947, 2.48477370107954682694832265153, 3.67541481626905637568293811747, 4.25296270608237626132226493318, 5.34824807480832354131014279796, 6.61586637839134071658635463068, 7.40276426987736887384940601174, 7.933882091438570182701182755454, 8.793873833166353152268179555036, 9.450132895739185176984196766540