Properties

Label 2-162-9.7-c11-0-20
Degree $2$
Conductor $162$
Sign $-0.766 - 0.642i$
Analytic cond. $124.471$
Root an. cond. $11.1566$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−16 + 27.7i)2-s + (−511. − 886. i)4-s + (6.10e3 + 1.05e4i)5-s + (6.94e3 − 1.20e4i)7-s + 3.27e4·8-s − 3.90e5·10-s + (−1.66e5 + 2.88e5i)11-s + (9.18e5 + 1.59e6i)13-s + (2.22e5 + 3.84e5i)14-s + (−5.24e5 + 9.08e5i)16-s + 6.76e6·17-s + 1.31e7·19-s + (6.25e6 − 1.08e7i)20-s + (−5.33e6 − 9.23e6i)22-s + (−1.47e7 − 2.54e7i)23-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.873 + 1.51i)5-s + (0.156 − 0.270i)7-s + 0.353·8-s − 1.23·10-s + (−0.311 + 0.540i)11-s + (0.686 + 1.18i)13-s + (0.110 + 0.191i)14-s + (−0.125 + 0.216i)16-s + 1.15·17-s + 1.21·19-s + (0.436 − 0.756i)20-s + (−0.220 − 0.382i)22-s + (−0.476 − 0.825i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.766 - 0.642i$
Analytic conductor: \(124.471\)
Root analytic conductor: \(11.1566\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (55, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :11/2),\ -0.766 - 0.642i)\)

Particular Values

\(L(6)\) \(\approx\) \(2.577015941\)
\(L(\frac12)\) \(\approx\) \(2.577015941\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (16 - 27.7i)T \)
3 \( 1 \)
good5 \( 1 + (-6.10e3 - 1.05e4i)T + (-2.44e7 + 4.22e7i)T^{2} \)
7 \( 1 + (-6.94e3 + 1.20e4i)T + (-9.88e8 - 1.71e9i)T^{2} \)
11 \( 1 + (1.66e5 - 2.88e5i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + (-9.18e5 - 1.59e6i)T + (-8.96e11 + 1.55e12i)T^{2} \)
17 \( 1 - 6.76e6T + 3.42e13T^{2} \)
19 \( 1 - 1.31e7T + 1.16e14T^{2} \)
23 \( 1 + (1.47e7 + 2.54e7i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + (1.25e7 - 2.16e7i)T + (-6.10e15 - 1.05e16i)T^{2} \)
31 \( 1 + (-1.23e8 - 2.13e8i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 - 4.11e8T + 1.77e17T^{2} \)
41 \( 1 + (2.97e8 + 5.14e8i)T + (-2.75e17 + 4.76e17i)T^{2} \)
43 \( 1 + (4.76e8 - 8.25e8i)T + (-4.64e17 - 8.04e17i)T^{2} \)
47 \( 1 + (-3.02e8 + 5.24e8i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 - 5.75e9T + 9.26e18T^{2} \)
59 \( 1 + (9.96e8 + 1.72e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (-5.04e9 + 8.74e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (4.61e9 + 7.99e9i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 - 2.20e10T + 2.31e20T^{2} \)
73 \( 1 - 2.58e10T + 3.13e20T^{2} \)
79 \( 1 + (-5.02e9 + 8.69e9i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 + (-2.18e10 + 3.78e10i)T + (-6.43e20 - 1.11e21i)T^{2} \)
89 \( 1 - 9.65e9T + 2.77e21T^{2} \)
97 \( 1 + (2.36e10 - 4.09e10i)T + (-3.57e21 - 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85216531458849331816518816253, −10.12042523419420516042670627514, −9.361023294407195719323409253059, −7.920468148768569697252979278784, −6.94770023166833007011577128448, −6.30958173655257373097495503382, −5.15301366795962659828814139056, −3.59051185064717311499716888239, −2.32563026421510874534017372218, −1.17801894876843414281125874864, 0.73152075774113750338068220137, 1.15586812387611084936561482600, 2.50862426990483494070138726438, 3.79888689562668241802610035601, 5.35709479777994763154902387954, 5.70077867745050757677550342284, 7.86145306009737231096136135230, 8.462383609976205136419459262219, 9.565846348776641417540985802698, 10.13007793806867440848023804034

Graph of the $Z$-function along the critical line