Properties

Label 2-40e2-1.1-c3-0-52
Degree $2$
Conductor $1600$
Sign $1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.30·3-s + 28.3·7-s − 8.49·9-s + 65.2·11-s + 33.6·13-s + 73.3·17-s + 134.·19-s − 121.·21-s − 14.7·23-s + 152.·27-s + 224.·29-s − 68.8·31-s − 280.·33-s + 196.·37-s − 144.·39-s − 143.·41-s − 15.0·43-s + 134.·47-s + 458.·49-s − 315.·51-s − 262.·53-s − 576.·57-s − 119.·59-s − 16.5·61-s − 240.·63-s − 545.·67-s + 63.2·69-s + ⋯
L(s)  = 1  − 0.827·3-s + 1.52·7-s − 0.314·9-s + 1.78·11-s + 0.718·13-s + 1.04·17-s + 1.61·19-s − 1.26·21-s − 0.133·23-s + 1.08·27-s + 1.43·29-s − 0.398·31-s − 1.48·33-s + 0.872·37-s − 0.594·39-s − 0.545·41-s − 0.0534·43-s + 0.417·47-s + 1.33·49-s − 0.865·51-s − 0.681·53-s − 1.34·57-s − 0.264·59-s − 0.0347·61-s − 0.481·63-s − 0.994·67-s + 0.110·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.688151991\)
\(L(\frac12)\) \(\approx\) \(2.688151991\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 4.30T + 27T^{2} \)
7 \( 1 - 28.3T + 343T^{2} \)
11 \( 1 - 65.2T + 1.33e3T^{2} \)
13 \( 1 - 33.6T + 2.19e3T^{2} \)
17 \( 1 - 73.3T + 4.91e3T^{2} \)
19 \( 1 - 134.T + 6.85e3T^{2} \)
23 \( 1 + 14.7T + 1.21e4T^{2} \)
29 \( 1 - 224.T + 2.43e4T^{2} \)
31 \( 1 + 68.8T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 + 143.T + 6.89e4T^{2} \)
43 \( 1 + 15.0T + 7.95e4T^{2} \)
47 \( 1 - 134.T + 1.03e5T^{2} \)
53 \( 1 + 262.T + 1.48e5T^{2} \)
59 \( 1 + 119.T + 2.05e5T^{2} \)
61 \( 1 + 16.5T + 2.26e5T^{2} \)
67 \( 1 + 545.T + 3.00e5T^{2} \)
71 \( 1 - 199.T + 3.57e5T^{2} \)
73 \( 1 - 43.2T + 3.89e5T^{2} \)
79 \( 1 + 438.T + 4.93e5T^{2} \)
83 \( 1 + 1.22e3T + 5.71e5T^{2} \)
89 \( 1 - 723.T + 7.04e5T^{2} \)
97 \( 1 + 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.963910164958330182926780258343, −8.267621130417366345140788621419, −7.45830538157350921783095114534, −6.47634408627750754927807395235, −5.73779205113317063384227396582, −5.01898323509557354295304327767, −4.15514285484358573213765570967, −3.09342796937854449034142240949, −1.41795931004164395333989723752, −1.00255278021045537620902070408, 1.00255278021045537620902070408, 1.41795931004164395333989723752, 3.09342796937854449034142240949, 4.15514285484358573213765570967, 5.01898323509557354295304327767, 5.73779205113317063384227396582, 6.47634408627750754927807395235, 7.45830538157350921783095114534, 8.267621130417366345140788621419, 8.963910164958330182926780258343

Graph of the $Z$-function along the critical line