Properties

Label 2-40e2-1.1-c3-0-93
Degree $2$
Conductor $1600$
Sign $-1$
Analytic cond. $94.4030$
Root an. cond. $9.71612$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 2·7-s − 2·9-s + 39·11-s − 84·13-s − 61·17-s + 151·19-s − 10·21-s + 58·23-s − 145·27-s − 192·29-s + 18·31-s + 195·33-s + 138·37-s − 420·39-s + 229·41-s − 164·43-s + 212·47-s − 339·49-s − 305·51-s − 578·53-s + 755·57-s − 336·59-s − 858·61-s + 4·63-s − 209·67-s + 290·69-s + ⋯
L(s)  = 1  + 0.962·3-s − 0.107·7-s − 0.0740·9-s + 1.06·11-s − 1.79·13-s − 0.870·17-s + 1.82·19-s − 0.103·21-s + 0.525·23-s − 1.03·27-s − 1.22·29-s + 0.104·31-s + 1.02·33-s + 0.613·37-s − 1.72·39-s + 0.872·41-s − 0.581·43-s + 0.657·47-s − 0.988·49-s − 0.837·51-s − 1.49·53-s + 1.75·57-s − 0.741·59-s − 1.80·61-s + 0.00799·63-s − 0.381·67-s + 0.505·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(94.4030\)
Root analytic conductor: \(9.71612\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1600,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 39 T + p^{3} T^{2} \)
13 \( 1 + 84 T + p^{3} T^{2} \)
17 \( 1 + 61 T + p^{3} T^{2} \)
19 \( 1 - 151 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 + 192 T + p^{3} T^{2} \)
31 \( 1 - 18 T + p^{3} T^{2} \)
37 \( 1 - 138 T + p^{3} T^{2} \)
41 \( 1 - 229 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 - 212 T + p^{3} T^{2} \)
53 \( 1 + 578 T + p^{3} T^{2} \)
59 \( 1 + 336 T + p^{3} T^{2} \)
61 \( 1 + 858 T + p^{3} T^{2} \)
67 \( 1 + 209 T + p^{3} T^{2} \)
71 \( 1 - 780 T + p^{3} T^{2} \)
73 \( 1 + 403 T + p^{3} T^{2} \)
79 \( 1 - 230 T + p^{3} T^{2} \)
83 \( 1 + 1293 T + p^{3} T^{2} \)
89 \( 1 + 1369 T + p^{3} T^{2} \)
97 \( 1 - 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.837568911249676647296587890667, −7.68023455141215903785477143376, −7.36060823832225659696076958494, −6.30664343868188063132256361926, −5.24756928958363234346953240701, −4.36585294014481861676416073626, −3.29758021370970752333761434417, −2.61741289990028213006074918898, −1.52373674345539725640574470017, 0, 1.52373674345539725640574470017, 2.61741289990028213006074918898, 3.29758021370970752333761434417, 4.36585294014481861676416073626, 5.24756928958363234346953240701, 6.30664343868188063132256361926, 7.36060823832225659696076958494, 7.68023455141215903785477143376, 8.837568911249676647296587890667

Graph of the $Z$-function along the critical line