L(s) = 1 | + (1.37 + 1.37i)3-s − 2.73·7-s + 0.755i·9-s + (−4.12 − 4.12i)11-s + (1.37 + 1.37i)13-s − 4.94i·17-s + (−0.292 + 0.292i)19-s + (−3.74 − 3.74i)21-s + 1.64·23-s + (3.07 − 3.07i)27-s + (5.67 − 5.67i)29-s − 3.95·31-s − 11.2i·33-s + (−2.48 + 2.48i)37-s + 3.77i·39-s + ⋯ |
L(s) = 1 | + (0.791 + 0.791i)3-s − 1.03·7-s + 0.251i·9-s + (−1.24 − 1.24i)11-s + (0.382 + 0.382i)13-s − 1.20i·17-s + (−0.0671 + 0.0671i)19-s + (−0.817 − 0.817i)21-s + 0.343·23-s + (0.591 − 0.591i)27-s + (1.05 − 1.05i)29-s − 0.710·31-s − 1.96i·33-s + (−0.408 + 0.408i)37-s + 0.605i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.323 + 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.323 + 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.295214119\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295214119\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.37 - 1.37i)T + 3iT^{2} \) |
| 7 | \( 1 + 2.73T + 7T^{2} \) |
| 11 | \( 1 + (4.12 + 4.12i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1.37 - 1.37i)T + 13iT^{2} \) |
| 17 | \( 1 + 4.94iT - 17T^{2} \) |
| 19 | \( 1 + (0.292 - 0.292i)T - 19iT^{2} \) |
| 23 | \( 1 - 1.64T + 23T^{2} \) |
| 29 | \( 1 + (-5.67 + 5.67i)T - 29iT^{2} \) |
| 31 | \( 1 + 3.95T + 31T^{2} \) |
| 37 | \( 1 + (2.48 - 2.48i)T - 37iT^{2} \) |
| 41 | \( 1 + 8.40iT - 41T^{2} \) |
| 43 | \( 1 + (-3.22 + 3.22i)T - 43iT^{2} \) |
| 47 | \( 1 - 5.19iT - 47T^{2} \) |
| 53 | \( 1 + (-7.20 + 7.20i)T - 53iT^{2} \) |
| 59 | \( 1 + (6.41 + 6.41i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.82 - 3.82i)T - 61iT^{2} \) |
| 67 | \( 1 + (5.76 + 5.76i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.92iT - 71T^{2} \) |
| 73 | \( 1 - 4.36T + 73T^{2} \) |
| 79 | \( 1 + 5.56T + 79T^{2} \) |
| 83 | \( 1 + (0.516 + 0.516i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.42iT - 89T^{2} \) |
| 97 | \( 1 + 9.44iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.193432143047039880569883799094, −8.679318950782195169299657599194, −7.84996875978797348765879141681, −6.82787656756932022156954742978, −5.96220213665295167145733005717, −5.06205415001027606042977910743, −3.96103832176100197114228230394, −3.15607167254144245067836352174, −2.59654668658684817557385843124, −0.43772812438211909077303498246,
1.51460161948799117000607581391, 2.58693205173848645007121191225, 3.27158182371001068044387799377, 4.52411223994201357717135435813, 5.56798333055441308500175525126, 6.56137052807241192069578609280, 7.26295266821455625118118237813, 7.926694780942094606829191191610, 8.644747476457935565334336199071, 9.465685662464753525932272788956