Properties

Label 2-40e2-80.29-c1-0-23
Degree $2$
Conductor $1600$
Sign $-0.655 + 0.755i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)3-s − 2·7-s + i·9-s + (−1 + i)11-s + (1 − i)13-s + 2i·17-s + (3 + 3i)19-s + (2 − 2i)21-s − 6·23-s + (−4 − 4i)27-s + (−3 − 3i)29-s + 8·31-s − 2i·33-s + (−3 − 3i)37-s + 2i·39-s + ⋯
L(s)  = 1  + (−0.577 + 0.577i)3-s − 0.755·7-s + 0.333i·9-s + (−0.301 + 0.301i)11-s + (0.277 − 0.277i)13-s + 0.485i·17-s + (0.688 + 0.688i)19-s + (0.436 − 0.436i)21-s − 1.25·23-s + (−0.769 − 0.769i)27-s + (−0.557 − 0.557i)29-s + 1.43·31-s − 0.348i·33-s + (−0.493 − 0.493i)37-s + 0.320i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.655 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.655 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $-0.655 + 0.755i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (849, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ -0.655 + 0.755i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (1 - i)T - 3iT^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + (1 - i)T - 11iT^{2} \)
13 \( 1 + (-1 + i)T - 13iT^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + (-3 - 3i)T + 19iT^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + (3 + 3i)T + 29iT^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + (3 + 3i)T + 37iT^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + (5 + 5i)T + 43iT^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + (5 + 5i)T + 53iT^{2} \)
59 \( 1 + (3 - 3i)T - 59iT^{2} \)
61 \( 1 + (9 + 9i)T + 61iT^{2} \)
67 \( 1 + (-5 + 5i)T - 67iT^{2} \)
71 \( 1 + 10iT - 71T^{2} \)
73 \( 1 + 4T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (1 - i)T - 83iT^{2} \)
89 \( 1 - 4iT - 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.409849107021290924212913667598, −8.166221422442874923142527804299, −7.69637422811741651850934558385, −6.42877478120596479587860185234, −5.87631680476208146052773780967, −5.00401420807203998386668496800, −4.09648511318576568001315043004, −3.18816530161154160413273479350, −1.87310610378703042054930399652, 0, 1.28971217048944487230143332373, 2.77741016294620158090345512097, 3.66254060472490055928832640638, 4.86788396244498416072826967746, 5.82865531445608805589229308253, 6.47840116003058930629506805179, 7.10033155884986463762739968618, 8.021975407540844688834874989070, 8.973240765902173635808131042840

Graph of the $Z$-function along the critical line