| L(s) = 1 | + (−0.707 − 0.707i)3-s − 1.99i·9-s − 1.73·11-s + (−2.82 + 2.82i)13-s + (1.22 − 1.22i)17-s + 5.19i·19-s + (−4.89 + 4.89i)23-s + (−3.53 + 3.53i)27-s + 6.92·29-s − 4i·31-s + (1.22 + 1.22i)33-s + (5.65 + 5.65i)37-s + 4.00·39-s + 3·41-s + (−5.65 − 5.65i)43-s + ⋯ |
| L(s) = 1 | + (−0.408 − 0.408i)3-s − 0.666i·9-s − 0.522·11-s + (−0.784 + 0.784i)13-s + (0.297 − 0.297i)17-s + 1.19i·19-s + (−1.02 + 1.02i)23-s + (−0.680 + 0.680i)27-s + 1.28·29-s − 0.718i·31-s + (0.213 + 0.213i)33-s + (0.929 + 0.929i)37-s + 0.640·39-s + 0.468·41-s + (−0.862 − 0.862i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.189 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.189 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8061755973\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8061755973\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (0.707 + 0.707i)T + 3iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + 1.73T + 11T^{2} \) |
| 13 | \( 1 + (2.82 - 2.82i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.22 + 1.22i)T - 17iT^{2} \) |
| 19 | \( 1 - 5.19iT - 19T^{2} \) |
| 23 | \( 1 + (4.89 - 4.89i)T - 23iT^{2} \) |
| 29 | \( 1 - 6.92T + 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-5.65 - 5.65i)T + 37iT^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 + (5.65 + 5.65i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4.89 - 4.89i)T + 47iT^{2} \) |
| 53 | \( 1 + (8.48 - 8.48i)T - 53iT^{2} \) |
| 59 | \( 1 - 10.3iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (4.94 - 4.94i)T - 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (-6.12 - 6.12i)T + 73iT^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (10.6 + 10.6i)T + 83iT^{2} \) |
| 89 | \( 1 + 3iT - 89T^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.798912570000383502147493268010, −8.785225352163551041258988525297, −7.81752047694604560658466514752, −7.23890848739493222494067669695, −6.25748194205893635211884995640, −5.69892827768934901840070292657, −4.61007248480165498253335104439, −3.67032049662817605886231406423, −2.47823277575108148503985928954, −1.23791528484242469205629514386,
0.34672066626031302673102280118, 2.20209083742000614580826404743, 3.08207303931617567067596077429, 4.51449538639763140327952099069, 4.95116148410086238672623159967, 5.86876726566238879766853315272, 6.76595761932271549026571827233, 7.84472977599088740487632898704, 8.224865589782190055291905838301, 9.414086669786558439663062459068