| L(s) = 1 | + (0.707 − 0.707i)3-s + 1.99i·9-s − 1.73·11-s + (−2.82 − 2.82i)13-s + (−1.22 − 1.22i)17-s − 5.19i·19-s + (−4.89 − 4.89i)23-s + (3.53 + 3.53i)27-s − 6.92·29-s − 4i·31-s + (−1.22 + 1.22i)33-s + (5.65 − 5.65i)37-s − 4.00·39-s + 3·41-s + (5.65 − 5.65i)43-s + ⋯ |
| L(s) = 1 | + (0.408 − 0.408i)3-s + 0.666i·9-s − 0.522·11-s + (−0.784 − 0.784i)13-s + (−0.297 − 0.297i)17-s − 1.19i·19-s + (−1.02 − 1.02i)23-s + (0.680 + 0.680i)27-s − 1.28·29-s − 0.718i·31-s + (−0.213 + 0.213i)33-s + (0.929 − 0.929i)37-s − 0.640·39-s + 0.468·41-s + (0.862 − 0.862i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.087333517\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.087333517\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (-0.707 + 0.707i)T - 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + 1.73T + 11T^{2} \) |
| 13 | \( 1 + (2.82 + 2.82i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.22 + 1.22i)T + 17iT^{2} \) |
| 19 | \( 1 + 5.19iT - 19T^{2} \) |
| 23 | \( 1 + (4.89 + 4.89i)T + 23iT^{2} \) |
| 29 | \( 1 + 6.92T + 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-5.65 + 5.65i)T - 37iT^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 + (-5.65 + 5.65i)T - 43iT^{2} \) |
| 47 | \( 1 + (-4.89 + 4.89i)T - 47iT^{2} \) |
| 53 | \( 1 + (8.48 + 8.48i)T + 53iT^{2} \) |
| 59 | \( 1 + 10.3iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-4.94 - 4.94i)T + 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (6.12 - 6.12i)T - 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + (-10.6 + 10.6i)T - 83iT^{2} \) |
| 89 | \( 1 - 3iT - 89T^{2} \) |
| 97 | \( 1 + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.094823641478002037848812187826, −8.153557840070998017153600541681, −7.62086201465219278874705426008, −6.94985107098693936088386296135, −5.77827198684891359703138403274, −5.03022628325623371197984924074, −4.08224026612968912744766927003, −2.65734116129298140903283937713, −2.22963128507866059965801434032, −0.37369260456568433767436085558,
1.62274021450278194819523278949, 2.81181503810719868251474150437, 3.82573257081332299932683221298, 4.49806032612834087960524395576, 5.68025130083990437199169431854, 6.37406407197317584860592343172, 7.49376488242799113055783505343, 8.033736879761640800713805241051, 9.137284108714780069738153750897, 9.551274550653825394261810560133