Properties

Label 8-40e8-1.1-c1e4-0-24
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 10·9-s + 32·27-s + 12·41-s − 40·43-s + 28·49-s + 28·67-s + 89·81-s + 36·83-s + 36·89-s + 12·107-s + 14·121-s + 48·123-s + 127-s − 160·129-s + 131-s + 137-s + 139-s + 112·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 2.30·3-s + 10/3·9-s + 6.15·27-s + 1.87·41-s − 6.09·43-s + 4·49-s + 3.42·67-s + 89/9·81-s + 3.95·83-s + 3.81·89-s + 1.16·107-s + 1.27·121-s + 4.32·123-s + 0.0887·127-s − 14.0·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 9.23·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(14.49321915\)
\(L(\frac12)\) \(\approx\) \(14.49321915\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$C_2$ \( ( 1 - p T^{2} )^{4} \)
11$C_2^3$ \( 1 - 14 T^{2} + 75 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^3$ \( 1 - 2 T^{2} - 285 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^3$ \( 1 + 34 T^{2} + 795 T^{4} + 34 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2$ \( ( 1 - p T^{2} )^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 142 T^{2} + 14835 T^{4} + 142 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 18 T + 235 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70969627662154486021029465365, −6.69676303741450502161001887161, −6.30997886198093302931913416904, −6.16963219705657633235645357219, −6.06018293533426589488756160905, −5.43877429435754413706936530596, −5.31259092739321913687551925083, −5.10764561584770146250117108047, −4.91550238924228285810777705781, −4.62885209241547409491426266975, −4.50242631012420504901707838228, −4.29515526130043392648543580820, −3.81457345230701978473962365937, −3.49025926622925289617435377717, −3.40630118259155737007650150794, −3.40580006320534725701013349181, −3.31895209490381357167892992056, −2.45303313972012190659072963380, −2.39882166790071681086385799714, −2.35999444913599819707844510303, −2.20292753354796729517817336163, −1.63303072257326074312814177864, −1.30763718413459271204052422426, −0.821500104886940392774969281301, −0.66800668014292607595188688813, 0.66800668014292607595188688813, 0.821500104886940392774969281301, 1.30763718413459271204052422426, 1.63303072257326074312814177864, 2.20292753354796729517817336163, 2.35999444913599819707844510303, 2.39882166790071681086385799714, 2.45303313972012190659072963380, 3.31895209490381357167892992056, 3.40580006320534725701013349181, 3.40630118259155737007650150794, 3.49025926622925289617435377717, 3.81457345230701978473962365937, 4.29515526130043392648543580820, 4.50242631012420504901707838228, 4.62885209241547409491426266975, 4.91550238924228285810777705781, 5.10764561584770146250117108047, 5.31259092739321913687551925083, 5.43877429435754413706936530596, 6.06018293533426589488756160905, 6.16963219705657633235645357219, 6.30997886198093302931913416904, 6.69676303741450502161001887161, 6.70969627662154486021029465365

Graph of the $Z$-function along the critical line