L(s) = 1 | + 2.82i·3-s − 2.82i·7-s − 5.00·9-s + 5.65·11-s − 2i·13-s + 2i·17-s + 8.00·21-s − 2.82i·23-s − 5.65i·27-s + 6·29-s + 5.65·31-s + 16.0i·33-s + 10i·37-s + 5.65·39-s + 2·41-s + ⋯ |
L(s) = 1 | + 1.63i·3-s − 1.06i·7-s − 1.66·9-s + 1.70·11-s − 0.554i·13-s + 0.485i·17-s + 1.74·21-s − 0.589i·23-s − 1.08i·27-s + 1.11·29-s + 1.01·31-s + 2.78i·33-s + 1.64i·37-s + 0.905·39-s + 0.312·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.871897830\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.871897830\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 2.82iT - 3T^{2} \) |
| 7 | \( 1 + 2.82iT - 7T^{2} \) |
| 11 | \( 1 - 5.65T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 - 5.65T + 31T^{2} \) |
| 37 | \( 1 - 10iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 8.48iT - 43T^{2} \) |
| 47 | \( 1 + 2.82iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 2.82iT - 67T^{2} \) |
| 71 | \( 1 - 5.65T + 71T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 - 2.82iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.865094262548910641723140412632, −8.789812767837845678232224479217, −8.324457671826309675838315156337, −6.99728077228937134649177493150, −6.30101724688792077497253102667, −5.20237943943613302465092369871, −4.22054382921406884478613210866, −3.96981655492187148013825241809, −2.92797579620847002424235102555, −1.03745201013272084248129158929,
1.00577800743495396839109662713, 1.96187683237837979839434404500, 2.86217587259847144809412136301, 4.18290299958026347422169719205, 5.45831158967915928654549026155, 6.33355625110433723899208867520, 6.71109540722337397623949502591, 7.58273783459155915124108526582, 8.477438332736358409645343428583, 9.046980860438293963395257908843