L(s) = 1 | − 3i·3-s + 2i·7-s − 6·9-s + 11-s − 4i·13-s − 5i·17-s − 19-s + 6·21-s + 2i·23-s + 9i·27-s − 8·29-s − 10·31-s − 3i·33-s − 6i·37-s − 12·39-s + ⋯ |
L(s) = 1 | − 1.73i·3-s + 0.755i·7-s − 2·9-s + 0.301·11-s − 1.10i·13-s − 1.21i·17-s − 0.229·19-s + 1.30·21-s + 0.417i·23-s + 1.73i·27-s − 1.48·29-s − 1.79·31-s − 0.522i·33-s − 0.986i·37-s − 1.92·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8086102703\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8086102703\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 - T + 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 + 5iT - 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 - 2iT - 23T^{2} \) |
| 29 | \( 1 + 8T + 29T^{2} \) |
| 31 | \( 1 + 10T + 31T^{2} \) |
| 37 | \( 1 + 6iT - 37T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - iT - 67T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 - 3iT - 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 + 13iT - 83T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 - 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.940365395135234342197874520385, −7.78267379702366503911566678537, −7.54441606307315142086291951611, −6.60787993037894861932008087359, −5.75553939452660216366465378292, −5.22950504693774832860943671498, −3.49425843478646385195998687414, −2.52736787156572640061655805974, −1.65215084025259195210162791554, −0.29693659920472739714115058474,
1.88065813762694887805252732370, 3.50182001433717918241826440946, 3.95092421656294872452447550579, 4.66676580480653568388087126255, 5.61698403181245981200100994309, 6.52023264273246910633162554055, 7.53401139642020225784072363159, 8.627158568023125130440847553623, 9.190256692326375913194274260451, 9.826948054714293204671499492915