L(s) = 1 | − 70.5·3-s + (−35.7 + 277. i)5-s − 1.25e3i·7-s + 2.78e3·9-s + 3.38e3i·11-s − 8.63e3·13-s + (2.51e3 − 1.95e4i)15-s + 3.50e4i·17-s + 1.66e4i·19-s + 8.85e4i·21-s + 6.42e3i·23-s + (−7.55e4 − 1.98e4i)25-s − 4.20e4·27-s + 1.71e5i·29-s − 1.90e5·31-s + ⋯ |
L(s) = 1 | − 1.50·3-s + (−0.127 + 0.991i)5-s − 1.38i·7-s + 1.27·9-s + 0.766i·11-s − 1.09·13-s + (0.192 − 1.49i)15-s + 1.73i·17-s + 0.556i·19-s + 2.08i·21-s + 0.110i·23-s + (−0.967 − 0.253i)25-s − 0.411·27-s + 1.30i·29-s − 1.14·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0166 + 0.999i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.0166 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.2203682185\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2203682185\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (35.7 - 277. i)T \) |
good | 3 | \( 1 + 70.5T + 2.18e3T^{2} \) |
| 7 | \( 1 + 1.25e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.38e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + 8.63e3T + 6.27e7T^{2} \) |
| 17 | \( 1 - 3.50e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 1.66e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 6.42e3iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.71e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 1.90e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 4.10e5T + 9.49e10T^{2} \) |
| 41 | \( 1 - 2.57e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 5.17e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 4.01e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 7.40e5T + 1.17e12T^{2} \) |
| 59 | \( 1 - 2.98e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 2.77e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 2.24e6T + 6.06e12T^{2} \) |
| 71 | \( 1 + 2.32e4T + 9.09e12T^{2} \) |
| 73 | \( 1 + 1.84e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 7.91e5T + 1.92e13T^{2} \) |
| 83 | \( 1 - 1.35e6T + 2.71e13T^{2} \) |
| 89 | \( 1 - 1.05e7T + 4.42e13T^{2} \) |
| 97 | \( 1 + 1.25e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07317229898944127355398464454, −10.53646522065273941908815679759, −9.870873222586881322563019682063, −7.69583736475152650881685481483, −6.97594628174563939998248856131, −6.09379432313335016507911904137, −4.75975107221573779836351412478, −3.68417240224247079394328972993, −1.65851715881765434327239938493, −0.10705938295718826367995450798,
0.74950614703444813578670944330, 2.52863432411961466201481949051, 4.67672140175468691297972147905, 5.33930924756374346926791486137, 6.13358044554347121912539540500, 7.57322648649932830966166624801, 8.961625262755927646660366288461, 9.707316413409432418860286629742, 11.29812686231495910490955476837, 11.76969404313169092201256874871