L(s) = 1 | − 18.1·3-s + (−5.66 + 279. i)5-s + 646. i·7-s − 1.85e3·9-s − 5.05e3i·11-s − 9.20e3·13-s + (103. − 5.08e3i)15-s − 3.39e4i·17-s + 3.48e4i·19-s − 1.17e4i·21-s + 3.39e4i·23-s + (−7.80e4 − 3.16e3i)25-s + 7.35e4·27-s + 6.50e4i·29-s + 1.46e5·31-s + ⋯ |
L(s) = 1 | − 0.389·3-s + (−0.0202 + 0.999i)5-s + 0.712i·7-s − 0.848·9-s − 1.14i·11-s − 1.16·13-s + (0.00788 − 0.389i)15-s − 1.67i·17-s + 1.16i·19-s − 0.277i·21-s + 0.582i·23-s + (−0.999 − 0.0405i)25-s + 0.719·27-s + 0.494i·29-s + 0.884·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 + 0.641i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.767 + 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.9411875839\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9411875839\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (5.66 - 279. i)T \) |
good | 3 | \( 1 + 18.1T + 2.18e3T^{2} \) |
| 7 | \( 1 - 646. iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 5.05e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + 9.20e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + 3.39e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 3.48e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 3.39e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 6.50e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 - 1.46e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 2.76e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + 8.33e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 6.14e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 9.71e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 7.61e5T + 1.17e12T^{2} \) |
| 59 | \( 1 + 9.82e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 7.25e5iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 1.49e6T + 6.06e12T^{2} \) |
| 71 | \( 1 + 1.44e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 2.08e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 2.81e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 9.50e6T + 2.71e13T^{2} \) |
| 89 | \( 1 - 3.46e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 4.51e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70707230210587567668545344523, −10.55763800643011560320441659774, −9.518028016081297909949015291943, −8.330683173358182359282179739351, −7.16653038318105676455691460803, −6.00691952387968589857533340717, −5.20222636397793321066024737654, −3.28667780040450689956259652539, −2.44557823820839981349059460629, −0.35175515856693259891753086936,
0.824172071325129411200693355316, 2.33714925862032340563518487593, 4.23931738675579026274749788663, 4.99773856856235339227878229377, 6.31128018092862402370949439871, 7.55571355951990516767729250066, 8.590585431981337404946464771126, 9.711073167613042964779114556219, 10.63847930175501180943459318695, 11.86096715574277926678071687372